Vol. 55

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2015-01-21

A Retrodirective Array with Reduced Surface Waves for Wireless Power Transfer Applications

By Mohammad Fairouz and Mohammad Saed
Progress In Electromagnetics Research C, Vol. 55, 179-186, 2014
doi:10.2528/PIERC14102808

Abstract

A one-dimensional, dual frequency, active retrodirective array is proposed for wireless power transfer applications. Microstrip circular patch antennas with four shorting pins are used as array elements to suppress surface waves. The proposed design eliminates undesired coupling between array elements due to surface waves present in conventional microstrip antenna arrays in order to improve array performance. The antenna array uses circularly polarized microstrip elements with higher gain than conventional microstrip antennas. The proposed retrodirective array operates at 2.4GHz for the interrogating signal and 5.8GHz for the retransmitted signal, using up-converting mixers. The beam scanning inherent in retrodirective arrays ensures a constant power level available to the charging devices, regardless of their location within an angular sector over which retrodirectivity is achieved. A two-element experimental prototype provided uniform power density within a 60° angular sector. The Design procedure, simulation results and experimental measurements are presented.

Citation


Mohammad Fairouz and Mohammad Saed, "A Retrodirective Array with Reduced Surface Waves for Wireless Power Transfer Applications," Progress In Electromagnetics Research C, Vol. 55, 179-186, 2014.
doi:10.2528/PIERC14102808
http://jpier.org/PIERC/pier.php?paper=14102808

References


    1. Brown, W. C., "The history of power transmission by radio waves," IEEE Transactions on Microwave Theory and Techniques, Vol. 32, No. 9, 1230-1242, Sep. 1984.
    doi:10.1109/TMTT.1984.1132833

    2. O’Brien, K., R. Teichmann, and H. Gueldner, "Magnetic field generation in an inductively coupled radio-frequency power transmission system," 37th IEEE Power Electronics Specialists Conference, PESC’06, 1-7, Jun. 18--22, 2006.

    3. Tesla, N., "The transmission of electric energy without wires," The 13th Anniversary Number of the Electrical World and Engineer, 1904.

    4. Tseng, R., Method and apparatus for wireless power transmission, US Patent Application No. 11/901158, 2007.

    5. Nishikawa, K. and T. Ishizaki, "Microwave-band wireless power transfer system using ceramic dielectric resonators," 2013 IEEE Wireless Power Transfer (WPT), 175-178, May 15--16, 2013.

    6. Ishizaki, T. and K. Nishikawa, Wireless power beam device using microwave power transfer, IEEE Wireless Power Transfer Conference (WPTC), 36-39, IEEE, 2014.

    7. Takamiya, M., T. Sekitani, Y. Miyamoto, Y. Noguchi, H. Kawaguchi, T. Someya, and T. Sakurai, "Design solutions for a multi-object wireless power transmission sheet based on plastic switches," IEEE International Solid-State Circuits Conference, Digest of Technical Papers, 362-609, 2007.

    8. Rangelov, A. A., H. Suchowski, Y. Silberberg, and N. V. Vitanov, "Wireless adiabatic power transfer," Annals Phys., Vol. 326, 626-633, 2011.
    doi:10.1016/j.aop.2010.11.008

    9. Vandervoorde, G. and R. Puers, "Wireless energy transfer for standalone systems: A comparison between low and high power applicability," Sensors and Actuators, Vol. 92, 305-311, Nov. 2000.

    10. Abbasi, M. I., S. Atif Adnan, M. Amin, and F. Kamran, Wireless power transfer using microwaves at 2.45GHz ISM band, 2009 6th International Bhurban Conference on Applied Sciences and Technology (IBCAST), 99-102, IEEE, 2009.

    11. Li, Y. and V. Jandhyala, "Design of retrodirective antenna arrays for short-range wireless power transmission," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, 206-211, 2012.
    doi:10.1109/TAP.2011.2167897

    12. Fusco, V. and N. Buchanan, "Analysis and characterization of PLL-based retrodirective array," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 2, 730-738, 2005.
    doi:10.1109/TMTT.2004.840620

    13. Guo, Y. C., X. W. Shi, and L. Chen, "Retrodirective array technology," Progress In Electromagnetics Research B, Vol. 5, 153-167, 2008.
    doi:10.2528/PIERB08021704

    14. Pon, C. Y., "Retrodirective array using the heterodyne technique," IEEE Transactions on Antennas and Propagation, Vol. 12, No. 2, 176-180, 1964.
    doi:10.1109/TAP.1964.1138191

    15. Miyamoto, R. Y. and T. Itoh, "Retrodirective arrays for wireless communications," IEEE Microwave Magazine, Vol. 3, No. 1, 71-79, 2001.
    doi:10.1109/6668.990692

    16. Rodenbeck, C., M. Li, and K. Chang, "A phased-array architecture for retrodirective microwave power transmission from the space solar power satellite," IEEE MTT-S International Microwave Symposium Digest, Vol. 3, 1679-1682, Jun. 2004.

    17. Shiroma, G. S., R. Y. Miyamoto, and W. A. Shiroma, "A full-duplex dual-frequency self-steering array using phase detection and phase shifting," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 1, 128-134, Jan. 2006.
    doi:10.1109/TMTT.2005.860330

    18. Chen, L., X. W. Shi, T. L. Zhang, C. Y. Cui, and H. J. Lin, "Design of a dual-frequency retrodirective array," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 478-480, 2010.
    doi:10.1109/LAWP.2010.2050855

    19. Chen, L., T. L. Zhang, S. F. Liu, and X. W. Shi, "A bidirectional dual-frequency retrodirective array for full-duplex communication applications," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 771-774, 2012.
    doi:10.1109/LAWP.2012.2206551

    20. Zhu, Y., Y. Xie, Z. Lie, and T. Dang, "A novel method of mutual coupling matching for array antenna design," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 8, 1013-1014, 2007.

    21. Jackson, D. R., J. T. Williams, A. K. Bhattacharyya, R. L. Smith, S. J. Buchheit, and S. A. Long, "Microstrip patch that do not excite surface waves," IEEE Transactions on Antennas and Propagation, Vol. 41, No. 8, 1026-1037, Aug. 1993.
    doi:10.1109/8.244643

    22. Bassilio, L. I., J. T. Williams, D. R. Jackson, and M. A. Khayat, "A comparative study for a new GPS reduced surface wave antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 233-236, 2005.
    doi:10.1109/LAWP.2005.851105

    23. Mehrotra, A. R., D. R. Jackson, J. T. Williams, and S. A. Long, "An annular-ring reduced surface wave microstrip antenna," IEEE Antennas and Propagation Society International Symposium, Vol. 2, 810-813, Aug. 1999.

    24. Al-Ajmi, A. R. and S. F. Mahmoud, "A single-feed circularly-polarized patch antenna for reduced surface wave applications," Microwave and Optical Technology Letters, Vol. 51, No. 11, 2675-2679, 2009.
    doi:10.1002/mop.24699

    25. Mahmoud, S. F. and A. R. Al-Ajmi, "A novel microstrip patch antenna with reduced surface wave excitation," Progress In Electromagnetics Research, Vol. 86, 71-86, 2008.
    doi:10.2528/PIER08092403

    26. Alajmi, A. R. and M. Saed, "Simplified microstrip patch antenna design for reduced surface wave applications," IEEE Antennas and Propagation Society International Symposium, 1849-1850, 2014.

    27. Pozar, D. M., Microwave Engineering, John Wiley & Sons, 2009.