Vol. 55

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2015-01-29

Ultra-Compact Electromagnetic Metamaterial Transmission Line and its Application in Miniaturized Butler Matrix

By Minxian Du and Huaxia Peng
Progress In Electromagnetics Research C, Vol. 55, 187-197, 2014
doi:10.2528/PIERC14101802

Abstract

A novel super compact electromagnetic metamaterial transmission line (EM-MTM TL) is proposed in this paper by using the structure of symmetric double spiral lines (SDSLs). The investigation results indicate that the proposed EM-MTM TL not only has controllable resonant frequency, but also has very compact size, and the circuit area is only 8.8 mm×7.2 mm (equal to λ0/32.16×λ0/39.31, where λ0 is the free space wavelength at the resonant frequency) without the feed lines. Using the proposed structure, a 3-dB branch-line coupler and a 0-dB crossover operated at 0.86 GHz have been designed, fabricated and measured; the measured and simulated results are in good agreement. The two microwave devices realize 84.8% and 85.7% size reduction, respectively. Then, a compact Butler matrix is obtained by optimizing the combination of the branch-line couplers, 0 dB crossovers and 45-degree phase shifters. The measured and simulated results of the proposed Butler matrix agree well, showing that the proposed device operates at 0.86 GHz with very good electromagnetic performances. Moreover, the circuit area of the proposed Butler matrix is 109.0 mm×89.3 mm, which realizes at least 80.9% size reduction in comparison with the conventional one (whose circuit area is at least 226.2 mm×226.2 mm), and the miniaturization is considerable. Besides, these designed microwave devices, without any lumped elements, bonding wires, defected ground structure (DGS), and via-holes, are more suitable for modern wireless communication systems.

Citation


Minxian Du and Huaxia Peng, "Ultra-Compact Electromagnetic Metamaterial Transmission Line and its Application in Miniaturized Butler Matrix," Progress In Electromagnetics Research C, Vol. 55, 187-197, 2014.
doi:10.2528/PIERC14101802
http://jpier.org/PIERC/pier.php?paper=14101802

References


    1. Yang, X. M., X. G. Liu, X. Y. Zhou, and T. J. Cui, "Reduction of mutual coupling between closely packed patch antennas using waveguided metamaterials," IEEE Antennas Wireless Propag. Lett., Vol. 11, 389-391, 2012.
    doi:10.1109/LAWP.2012.2193111

    2. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, May 2000.
    doi:10.1103/PhysRevLett.84.4184

    3. Shelby, R. A., D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, "Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial," Appl. Phys. Lett., Vol. 78, No. 4, 489-491, 2001.
    doi:10.1063/1.1343489

    4. Sanada, A., C. Caloz, and T. Itoh, "Planar distributed structures with negative refractive properties," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, 1252-1263, Apr. 2004.
    doi:10.1109/TMTT.2004.825703

    5. Eleftheriades, G. V., A. K. Iyer, and P. C. Kremer, "Planar negative refractive index media using periodically L-C loaded transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 12, 2702-2712, 2002.
    doi:10.1109/TMTT.2002.805197

    6. Enkrich, C., M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic metamaterials at Telecommunication and visible frequencies," Phys. Rev. Lett., Vol. 95, 203901, 2005.
    doi:10.1103/PhysRevLett.95.203901

    7. Wu, G.-C., G.-M. Wang, Y.-W. Wang, and L.-Z. Hu, "A compact microstrip low-pass filter using D-CRLH transmission line with ultra-wide stopband and high selectivity," Radioengineering, Vol. 22, No. 3, 734-738, 2013.

    8. Bonache, J., G. Sisó, M. Gil, A. Iniesta, J. Garcíarincón, and F. Martín, "Application of composite right/left-handed (CRLH) transmission lines based on complementary split ring resonators (CSRRs) to the design of dual-band microwave components," IEEE Microwave Wireless Component Letters, Vol. 18, No. 8, 524-526, 2008.
    doi:10.1109/LMWC.2008.2001011

    9. Wu, G., G. Wang, T. Li, and C. Zhou, "Novel dual-composite right/left-handed transmission line and its application to bandstop filter," Progress In Electromagnetics Research Letters, Vol. 37, 29-35, 2013.
    doi:10.2528/PIERL12121101

    10. Oliner, A. A., A periodic-structure negative-refractive-index medium without resonant elements, IEEE-AP-S USNC/URSI National Radio Science Meeting, 41, San Antonio, TX, 2002.

    11. Ziolkowski, R. W., "Propagation in and scattering from a matched metamaterial having a zero index of refraction," Physical Review E, Vol. 70, 046608, 2004.
    doi:10.1103/PhysRevE.70.046608

    12. Ma, H. F., X. Chen, H. S. Xu, X. M. Yang, W. X. Jiang, and T. J. Cui, "Experiments on high-performance beam-scanning antennas made of gradient-index metamaterials," Appl. Phys. Lett., Vol. 95, 094107, 2009.
    doi:10.1063/1.3223608

    13. Assimonis, S. D., T. V. Yioultsis, and C. S. Antonopoulos, "Computational investigation and design of planar EBG structures for coupling reduction in antenna applications," IEEE Trans. Magn., Vol. 48, No. 2, 771-774, 2012.
    doi:10.1109/TMAG.2011.2172680

    14. Pendry, J. B., L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science, Vol. 305, 847, 2004.
    doi:10.1126/science.1098999

    15. Palandoken, M., A. Grede, and H. Henke, "Broadband microstrip antenna with left-handed metamaterials," IEEE Trans. Antennas Propag., Vol. 57, No. 2, 331-338, 2009.
    doi:10.1109/TAP.2008.2011230

    16. Bait-Suwailam, M. M., M. S. Boybay, and O. M. Ramahi, "Electromagnetic coupling reduction in high-profile monopole antennas using single-negative magnetic metamaterials for MIMO applications," IEEE Trans. Antennas Propag., Vol. 58, No. 9, 2894-2902, 2010.
    doi:10.1109/TAP.2010.2052560

    17. Xu, H.-X., G.-M. Wang, M.-Q. Qi, and H.-Y. Zeng, "Ultra-small single-negative electric metamaterials for electromagnetic coupling reduction of microstrip antenna array," Optics Express, Vol. 20, No. 20, 21968-21976, 2012.
    doi:10.1364/OE.20.021968

    18. Baena, J. D., R. Marques, F. Medina, and J. Martel, "Artificial magnetic metamaterial design by using spiral resonators," Physical Review B, Vol. 69, 144021-144025, 2004.

    19. Erentok, A., R. W. Ziolkowski, J. A. Nielsen, R. B. Greegor, C. G. Parazzoli, M. H. Tanielian, S. A. Cummer, B.-I. Popa, T. Hand, D. C. Vier, and S. Schultz, "Low frequency lumped element-based negative index metamaterial," Appl. Phys. Lett., Vol. 91, 184104, 2007.
    doi:10.1063/1.2803771

    20. Yousefi, L. and O. M. Ramahi, "Artificial magnetic materials using fractal hilbert curves," IEEE Trans. Antennas Propag., Vol. 58, No. 8, 2614-2622, 2010.
    doi:10.1109/TAP.2010.2050438

    21. Chen, W.-L., G.-M. Wang, and C.-X. Zhang, "Fractal-shaped switched beam antenna with reduced size and broadside beam," Electronics Letters, Vol. 44, No. 19, 1110-1111, 2008.
    doi:10.1049/el:20081502

    22. Wang, C.-W., T.-G. Ma, and C.-F. Yang, "A new planar artificial transmission line and its applications to a miniaturized Butler matrix," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 12, 2792-2801, 2007.
    doi:10.1109/TMTT.2007.909474

    23. Xu, H.-X., G.-M. Wang, and X. Wan, "Compact Butler matrix using composite right/left handed transmission line," Electronics Letters, Vol. 47, No. 19, 978-979, 2011.
    doi:10.1049/el.2011.2135

    24. Gruszczynski, S., K. Wincza, and K. Sachse, "Compact broadband Butler matrix in multilayer technology for integrated multibeam antennas," Electronics Letters, Vol. 43, No. 11, 635-636, 2007.
    doi:10.1049/el:20070613

    25. Kholodniak, D., et al., Wideband 0-dB branch-line directional couplers, IEEE MTT-S International Microwave Symposium Digest, 1307-1310, Boston, MA, USA, 2000.

    26. Lu, K., G. M. Wang, C. X. Zhang, and Y. W. Wang, "Design of miniaturized branch-line coupler based on novel spiral-based resonators," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 16, 2244-2253, 2011.
    doi:10.1163/156939311798147024

    27. Zong, B.-F., Research on applications of miniaturized microstrip resonator, 59-62 Master Dissertation of Air Force Engineering University, Xi’an, China, 2012.

    28. Lin, G., Investigations into distributed composite right/left-handed transmission line structures and their applications, 98-104 Doctor Dissertation of Air Force Engineering University, Xi’an, China, 2013.

    29. Wang, J., B.-Z.Wang, Y.-X. Guo, L. C. Ong, and S. Xiao, "A compact slow-wave microstrip branch-line coupler with high performance," IEEE Microwave Wireless Component Letters, Vol. 17, No. 7, 501-503, 2007.
    doi:10.1109/LMWC.2007.899307

    30. Chen, W.-L., Investigations into the applications of fractal geometry in microwave engineering, 70-75 Doctor Dissertation of Air Force Engineering University, Xi’an, China, 2008.

    31. Yu, Z.-W., Investigations on planar monopulse antenna array and feed netwok system, 49-54 Doctor Dissertation of Air Force Engineering University, Xi’an, China, 2012.

    32. Zheng, S. and W. S. Chan, "Compact Butler matrix using size reduced elements," Microwave and Optical Technology Letters, Vol. 49, No. 7, 1519-1521, 2007.
    doi:10.1002/mop.22489