Vol. 54

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2014-11-05

A Fully Planar Near-Field Resonant Parasitic Antenna

By Sen Yan and Guy Vandenbosch
Progress In Electromagnetics Research C, Vol. 54, 163-169, 2014
doi:10.2528/PIERC14082803

Abstract

A near-field resonant parasitic (NFRP) antenna is presented. Unlike the conventional NFRP antenna, which is fed by coaxial cables, the topology is driven by a planar ``monopole''. In this way, the antenna and the front end circuit can be designed in a single plane, which is crucial for system integration. The radiator is electrically small (λ0/19.3 × λ0/10.47 × λ0/76.4) while reaching a high efficiency (94%) and a good bandwidth (85 MHz). The operating frequency and input impedance are easily tailored. Measured results verify the working mechanism.

Citation


Sen Yan and Guy Vandenbosch, "A Fully Planar Near-Field Resonant Parasitic Antenna," Progress In Electromagnetics Research C, Vol. 54, 163-169, 2014.
doi:10.2528/PIERC14082803
http://jpier.org/PIERC/pier.php?paper=14082803

References


    1. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, 2001.

    2. Wong, K. L., Compact and Broadband Microstrip Antennas, Wiley, 2002.
    doi:10.1002/0471221112

    3. Anguera, J., A. And´ujar, M. C. Huynh, C. Orlenius, C. Picher, and C. Puente, "Advances in antenna technology for wireless handheld devices," International Journal on Antennas and Propagation, Vol. 2013, Article ID 838364, 2013.

    4. Soh, P. J., G. A. E. Vandenbosch, O. L. Soo, and N. H. M. Rais, "Design of a broadband all-textile slotted PIFA," IEEE Trans. Antennas Propag., Vol. 60, No. 1, 379-384, Jan. 2012.
    doi:10.1109/TAP.2011.2167950

    5. Sallam, M. O., E. A. Soliman1, G. A. E. Vandenbosch, and W. D. Raedt, "Novel electrically small meander line RFID tag antenna," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 23, No. 6, 639-645, 2012.
    doi:10.1002/mmce.20699

    6. Radiom, S., H. Aliakbarian, G. A. E. Vandenbosch, and G. G. E. Gielen, "An effective technique for symmetric planar monopole antenna miniaturization," IEEE Trans. Antennas Propag., Vol. 57, No. 10, 2989-2996, Oct. 2009.
    doi:10.1109/TAP.2009.2028620

    7. Wang, Y.-S. and S.-J. Chung, "A short open-end slot antenna with equivalent circuit analysis," IEEE Trans. Antennas Propag., Vol. 58, No. 5, 1771-1775, Oct. 2010.
    doi:10.1109/TAP.2010.2044471

    8. Ban, Y.-L., J.-J. Chen, S.-C. Sun, J. L.-W. Li, and J.-H. Guo, "Printed wideband antenna with chipcapacitor loaded inductive strip for LTE/GSM/UMTS WWAN wireless USB dongle applications," Progress In Electromagnetics Research, Vol. 128, 313-329, 2012.
    doi:10.2528/PIER12022809

    9. Huang, J.-T., J.-H. Shiao, and J.-M. Wu, "A miniaturized Hilbert inverted-F antenna for wireless sensor network applications," IEEE Trans. Antennas Propag., Vol. 58, No. 9, 3100-3103, Sep. 2010.
    doi:10.1109/TAP.2010.2052583

    10. Ziolkowski, R. W. and A. Eipple, "Application of double negative metamaterials to increase the power radiated by electrically small antennas," IEEE Trans. Antennas Propag., Vol. 54, 2113-2130, Jul. 2006.

    11. Stuart, H. R. and A. Pidwerbetsky, "Electrically small antenna elements using negative permittivity resonators," IEEE Trans. Antennas Propag., Vol. 54, No. 6, 1644-1653, Jun. 2006.
    doi:10.1109/TAP.2006.875498

    12. Chen, P. Y. and A. Alu, "Sub-wavelength elliptical patch antenna loaded with μ-negative metamaterials," IEEE Trans. Antennas Propag., Vol. 58, No. 9, 2909-2919, Sep. 2010.
    doi:10.1109/TAP.2010.2052578

    13. Ahmadi, A., S. Saadat, and H. Mosallaei, "Resonance and Q performance of ellipsoidal ENG subwavelength radiators," IEEE Trans. Antennas Propag., Vol. 59, No. 3, 706-713, Mar. 2011.
    doi:10.1109/TAP.2010.2103022

    14. Alici, K. B., A. E. Serebryannikov, and E. Ozbay, "Radiation properties and coupling analysis of a metamaterial based, dual polarization, dual band, multiple split ring resonator antenna," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8-9, 1183-1193, 2012.
    doi:10.1163/156939310791586188

    15. Choia, J. and S. Lim, "Frequency and radiation pattern reconfigurable small metamaterial antenna using its extraordinary zeroth-order resonance," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 14-15, 2119-2127, Apr. 2012.

    16. Erentok, A. and R. W. Ziolkowski, "Metamaterial-inspired efficient electrically small antennas," IEEE Trans. Antennas Propag., Vol. 56, No. 3, 691-701, Mar. 2008.
    doi:10.1109/TAP.2008.916949

    17. Kim, O. S. and O. Breinbjerg, "Miniaturised self-resonant split-ring resonator antenna," Electronics Letters, Vol. 45, No. 4, 196-197, Feb. 2009.
    doi:10.1049/el:20093244

    18. Ziolkowski, R. W., P. Jin, and C.-C. Lin, "Metamaterial-inspired engineering of antennas," Proceedings of the IEEE, Vol. 99, No. 10, 1720-1731, Oct. 2010.
    doi:10.1109/JPROC.2010.2091610

    19. Quevedo-Teruel, O., M. N. M. Kehn, and E. Rajo-Iglesias, "Dual-band patch antennas based on short-circuited split ring resonators," IEEE Trans. Antennas Propag., Vol. 59, No. 8, 2758-2765, Aug. 2011.
    doi:10.1109/TAP.2011.2158786

    20. Jin, P. and R. W. Ziolkowski, "Multi-frequency, linear and circular polarized, metamaterialinspired, near-field resonant parasitic antennas," IEEE Trans. Antennas Propag., Vol. 59, No. 5, 1446-1459, May 2011.
    doi:10.1109/TAP.2011.2123053

    21. Jin, P. and R. W. Ziolkowski, "Multiband extensions of the electrically small, near-field resonant parasitic Z antenna," IET Microw. Antennas Propag., Vol. 4, No. 8, 1016-1025, 2010.
    doi:10.1049/iet-map.2009.0609

    22. Pozar, D. M. and B. Kaufman, "Comparison of three methods for the measurement of printed antenna efficiency," IEEE Trans. Antennas Propag., Vol. 36, No. 1, 136-139, Jan. 1988.
    doi:10.1109/8.1084