Vol. 54

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2014-11-04

Remote Detection and Recognition of Electrostatic Discharge from HVDC Transmission Lines

By Yue Zhang, Shanghe Liu, and Xiaofeng Liu
Progress In Electromagnetics Research C, Vol. 54, 143-154, 2014
doi:10.2528/PIERC14072901

Abstract

To remotely detect corona discharge from High-Voltage Direct Current (HVDC) transmission lines, a detecting system combining detecting platform and data progressing system is designed. Detecting platform is developed resorting to the principle of differential noise reduction, which can fulfill narrow-band detection breaking away interference from broadcasting and easily catch the electrostatic discharge signal. To get rid of interference from spark discharge, a data progressing system containing feature extractions, clustering and recognition technologies is developed. Clustering is realized by extracting five discharge features, including peak factor, form factor, skewness, kurtosis and mean square error. The unsupervised clustering Fuzzy C-Means (FCM) method is used to achieve fast separation for electrostatic discharges and provide training set for pattern recognition. Pattern recognition resorts to Support Vector Machine (SVM) method. For comparison, Back Propagation (BP) and Learning Vector Quantization (LVQ) approaches are taken to test the recognition ability. The results show that SVM recognizer with a recognition rate of 97.5% achieves higher performance than BP and LVQ methods. It can be concluded that the detecting system can be an interesting alternative for electrostatic discharge detection.

Citation


Yue Zhang, Shanghe Liu, and Xiaofeng Liu, "Remote Detection and Recognition of Electrostatic Discharge from HVDC Transmission Lines," Progress In Electromagnetics Research C, Vol. 54, 143-154, 2014.
doi:10.2528/PIERC14072901
http://jpier.org/PIERC/pier.php?paper=14072901

References


    1. Nakano, Y. and Y. Sunaga, "Availability of corona cage for predicting radio interference generated from HVDC transmission line," IEEE Trans. Power Del., Vol. 5, No. 3, 1436-1442, Jul. 1990.
    doi:10.1109/61.57986

    2. Maruvada, P. S., Corona Performance of High-voltage Transmission Lines, Research Studies Press Ltd, England, 2000.

    3., CISPR TR 18-1 ED.2, "Radio interference characteristics of overhead power lines and high-voltage equipment-part 1,", 2010.

    4., CISPR TR 18-1 ED.2, "Radio interference characteristics of overhead power lines and high-voltage equipment-part 2,", 2010.

    5. Zhou, C., Y. Liu, and X. Rui, "Mechanism and characteristic of rain-induced vibration on highvoltage transmission line," Journal of Mechanical Science and Technology, Vol. 26, No. 8, 2505-2510, 2012.
    doi:10.1007/s12206-012-0631-0

    6. Bracken, T. D., R. S. Senior, and W. H. Bailey, "DC electric fields from corona-generated space charge near AC transmission lines," IEEE Trans. Power Del., Vol. 20, No. 2, 1692-1702, 2005.
    doi:10.1109/TPWRD.2004.834309

    7. Hatanaka, G. K., "Field measurement of VHF noise from an operating 500-kV power line," IEEE Trans. Power App. Syst., Vol. 100, No. 2, 863-872, 1981.
    doi:10.1109/TPAS.1981.316945

    8. Huertas, J. I., R. Barraza, and J. M. Echeverry, "Wireless data transmission from inside electromagnetic fields," Journal of Microwave Power and Electromagnetic Energy, Vol. 44, No. 2, 88-97, 2010.

    9. Chartier, V. L., et al., "Electromagnetic interference measurements at 900 MHz on 230 kV and 500 kV transmission lines," IEEE Trans. Power Del., Vol. 2, No. 2, 140-149, 1986.
    doi:10.1109/TPWRD.1986.4307944

    10. Chao, F., et al., "Impact factors in measurements of ion-current density produced by high-voltage DC wire’s corona," IEEE Trans. Power Del., Vol. 28, No. 3, 1414-1422, 2013.
    doi:10.1109/TPWRD.2013.2252203

    11. Radwan, R. M. and A. M. Mahdy, "Electric field mitigation under extra high voltage power lines," IEEE Trans. Dielectr. Electr. Insul., Vol. 20, No. 1, 54-62, 2013.
    doi:10.1109/TDEI.2013.6451341

    12. Lv, F., S. You, Y. Liu, Q. Wan, and Z. Zhao, "AC conductors’ corona-loss calculation and analysis in corona cage," IEEE Trans. Power Del., Vol. 27, No. 2, 877-885, 2012.
    doi:10.1109/TPWRD.2012.2183681

    13. Morris, R. M., A, . R. Morse, J. P. Griffin, O. C. Norris-Elye, C. V. Thio, and J. S. Goodman, "The corona and radio interference performance of the Nelson river HVDC transmission lines," IEEE Trans. Power App. Syst., Vol. 98, No. 6, 1924-1936, 1979.
    doi:10.1109/TPAS.1979.319372

    14. Maryvada, P. S., "Electric field and ion current environment of HVdc transmission lines: Comparison of calculations and measurements," IEEE Trans. Power Del., Vol. 27, No. 1, 401-410, 2012.
    doi:10.1109/TPWRD.2011.2172003

    15. Vahidi, B., M. J. Alborzi, and H. Aghaeinia, "Corona detection on surfaces of insulators using ultrasound sensors and fibre-optic transmission system," European Transactions on Electrical Power, Vol. 15, No. 5, 413-424, 2005.
    doi:10.1002/etep.50

    16. Fromm, U. and F. H. Kreuger, "Statistical behavior of partial discharge at DC voltage," Japanese J. Appl. Phys., Vol. 33, 6708-6715, 1994.
    doi:10.1143/JJAP.33.6708

    17. Fromm, U., "Interpretation of partial discharges at DC voltage," IEEE Trans. Dielectr. Electr. Insul., Vol. 2, No. 5, 761-769, Oct. 1995.
    doi:10.1109/94.469972

    18. Fromm, U., "Partial discharge and breakdown testing at high dc voltage,", Delft University of Technology (the Netherlands), Delft University Press, ISBN 90-407-1155-0, 1995.
    doi:10.1109/94.469972

    19. Morshuis, P., M. Jeroense, and J. Beyer, "Partial discharge part XXIV: The analysis of PD in HVDC equipment," IEEE Electr. Insul. Mag., Vol. 13, No. 2, 6-16, 1997.
    doi:10.1109/57.583421

    20. Gulski, E., H. P. Burger, G. H. Vaillancourt, and R. Brooks, "PD pattern analysis during induced test of large power transformers," IEEE Trans. Dielectr. Insul., Vol. 7, No. 1, 95-101, Feb. 2000.
    doi:10.1109/94.839346

    21. Morshuis, P. H. F. and J. J. Smit, "Partial discharges at voltage: Their Mechanism, detection and analysis," IEEE Trans. Dielectr. Insul., Vol. 12, No. 2, 763-808, 2005.
    doi:10.1109/TDEI.2005.1430401

    22. Wang, M. H., "Partial discharge pattern recognition of current transformers using an ENN," IEEE Trans. Power Del., Vol. 20, No. 3, 1984-1990, 2005.
    doi:10.1109/TPWRD.2005.848441

    23. Wang, M. H., "Extension neural network-type 2 and its applications," IEEE Trans. Neural Netw., Vol. 16, No. 6, 1352-1361, 2005.
    doi:10.1109/TNN.2005.853334

    24. Si, W., J. Li, P. Yuan, and Y. Li, "Digital detection, grouping and classification of partial discharge signals at DC voltage," IEEE Trans. Dielectr. Insul., Vol. 15, No. 6, 1663-1674, 2008.
    doi:10.1109/TDEI.2008.4712671

    25. Yamamoto, S. and O. Ozeki, "Properties of high-frequency conducted noise from automotive electrical accessories," IEEE Trans. Electromagn. Compat., Vol. 25, No. 1, 2-7, 1983.
    doi:10.1109/TEMC.1983.304145

    26. Xiao, J., D. Pommerenke, J. L. Drewniak, H. Shumiya, T. Yamada, and K. Araki, "Model of secondary ESD for a portable electronic product," IEEE Trans. Electromagn. Compat., Vol. 54, No. 3, 546-555, 2012.
    doi:10.1109/TEMC.2011.2171040

    27. Dempster, A. P., N. M. Laird, and D. B. Rubin, "Maximum likelihood from incomplete data via the EM algorithm," Journal of the Royal Statistical Society, Series B, Vol. 39, No. 1, 1-38, 1977.

    28. Rohlfing, T., D. L. B. Russakoff, and C. R. Maurer, "Performance-based classifier combination in atlas-based image segmentation using expectation-maximization parameter estimation," IEEE Trans. Med. Imaging, Vol. 23, 983-994, 2004.
    doi:10.1109/TMI.2004.830803

    29. Kanungo, T., D. M. Mount, N. S. Netanyahu, C. D. Piatko, and Y. Wu, "An efficient k-means clustering algorithm: Analysis and implementation," IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 24, No. 7, 881-892, Jul. 2002.
    doi:10.1109/TPAMI.2002.1017616

    30. Zhang, S., R. Wang, and X. Zhang, "Identification of overlapping community structure in complex networks using fuzzy C-means clustering," Physica A: Statistical Mechanics and its Applications, Vol. 374, No. 1, 483-490, 2007.
    doi:10.1016/j.physa.2006.07.023

    31. Dunn, J. C., "A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters," J. Cybernet., Vol. 3, No. 3, 32-57, 1973.
    doi:10.1080/01969727308546046

    32. Bezdek, J. C., Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New York, 1981.
    doi:10.1007/978-1-4757-0450-1

    33. Camastra, F. and A. Vinciarelli, "Cursive character recognition by learning vector quantization," Pattern Recognition Letters, Vol. 22, No. 6, 625-629, 2001.
    doi:10.1016/S0167-8655(01)00008-3

    34. Camastra, F. and A. Vinciarelli, "Combining neural gas and learning vector quantization for cursive character recognition," Neurocomputing, Vol. 51, 147-159, Apr. 2003.
    doi:10.1016/S0925-2312(02)00613-6

    35. Vapnik, V. N., Statistical Learning Theory, John Wiley & Sons, New York, 1998.

    36. Sharkawy, R. M., R. S. Mangoubi, T. K. Abdel-Galil, M. M. Salama, and R. Bartnikas, "SVM classification of contaminating particles in liquid dielectrics using higher order statistics of electrical and acoustic PD measurements," IEEE Trans. Dielectr. Electr. Insul., Vol. 14, No. 3, 669-678, 2007.
    doi:10.1109/TDEI.2007.369530