Vol. 52
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2014-08-04
Q -Band Single-Layer Planar Fabry-Perot Cavity Antenna with Single Integrated-Feed
By
Progress In Electromagnetics Research C, Vol. 52, 135-144, 2014
Abstract
An extremely simple design of a planar Fabry-Pérot cavity antenna is proposed as a very promising candidate for millimeter-wave wireless systems. The simplicity of this design is obtained by using a dielectric slab, here quartz, to form a single-layer cavity with thin layers of copper etched/printed on both sides, to form the ground plane on one side and the frequency-selective surface (FSS) on the opposite side of the slab. By keeping the planarity of the structure and not-requiring an additional supporting layer, the cavity is excited using an integrated feeding-slot antenna etched on its ground plane. The variations in the radiation properties of the proposed antenna, linked to its leaky-wave behavioral explanation, are studied by designing three prototypes with different maximum gain values. The prototype FPCs are designed to operate for Q-band wireless communication systems (here, resonating at three different frequencies in the range of 42-46 GHz). The performance of the designed antennas, backed by initial analytical and numerical simulations, is verified with a full set of measurement results.
Citation
Seyed Ali Hosseini, Filippo Capolino, and Franco De Flaviis, "Q -Band Single-Layer Planar Fabry-Perot Cavity Antenna with Single Integrated-Feed," Progress In Electromagnetics Research C, Vol. 52, 135-144, 2014.
doi:10.2528/PIERC14061808
References

1. Oleski, P. J., "GBS/Milstar airborne RX and TX antenna," Proc. Military Communications Conf., Vol. 2, 599-603, 2000.

2. Biglarbegian, B., M. Fakharzadeh, M. R. Nezhad-Ahmadi, et al., "Optimized patch array antenna for 60 GHz wireless applications," IEEE Intl. Symp. Antennas Propag., 1-4, Toronto, Ontario, Canada, Jul. 2010.

3. Tseng, C.-H., C.-J. Chen, and T.-H. Chu, "A low-cost 60-GHz switched-beam patch antenna array with Butler matrix network," IEEE Antennas Wirel. Propag. Letters, Vol. 7, 432-435, 2008.
doi:10.1109/LAWP.2008.2001849

4. Zhao, T. X., D. R. Jackson, J. T. Williams, et al., "General formulas for 2-D leaky-wave antennas," IEEE Trans. Antennas Propag., Vol. 53, No. 11, 3525-3533, 2005.
doi:10.1109/TAP.2005.856315

5. Lovat, G., P. Burghignoli, and D. R. Jackson, "Fundamental properties and optimization of broadside radiation from uniform leaky-wave antennas," IEEE Trans. Antennas Propag., Vol. 54, No. 5, 1442-1452, 2006.
doi:10.1109/TAP.2006.874350

6. Hosseini, S. A., F. Capolino, F. De Flaviis, et al., "Improved method to estimate the 3 dB power bandwidth of a Fabry-Pérot cavity antenna covered by a thin frequency selective surface," IEEE Intl. Symp. Antennas Propag., 1-4, Spokane, WA, Jul. 2011.

7. Lovat, G., P. Burghignoli, F. Capolino, et al., "Highly-directive planar leaky-wave antennas: A comparison between metamaterial-based and conventional designs," Proc. Europ. Microw. Assoc., Vol. 2, 12-21, 2006.

8. Ostner, H., E. Schmidhammer, J. Detlefsen, et al., "Radiation from dielectric leaky-wave antennas with circular and rectangular apertures," Electromagnetics, Vol. 17, 505-535, 1997.
doi:10.1080/02726349708908557

9. Sauleau, R., P. Coquet, and T. Matsui, "Low-profile directive quasi-planar antennas based on millimeter wave Fabry-Perot cavities," Proc. Microw. Antennas Propag., Vol. 150, 274-278, 2003.
doi:10.1049/ip-map:20030416

10. Lee, Y., X. Lu, Y. Hao, et al., "Low-profile directive millimeter-wave antennas using free-formed three-dimensional (3-D) electromagnetic bandgap structures," IEEE Trans. Antennas Propag., Vol. 57, No. 10, 2893-2903, 2009.
doi:10.1109/TAP.2009.2029299

11. Franson, S. J. and R. W. Ziolkowski, "Gigabit per second data transfer in high-gain metamaterial structures at 60 GHz," IEEE Trans. Antennas Propag., Vol. 57, No. 10, 2913-2925, 2009.
doi:10.1109/TAP.2009.2029277

12. Hosseini, S. A., F. Capolino, and F. De Flaviis, "A 44GHz single-feed Fabry-P´erot cavity antenna designed and fabricated on Quartz," IEEE Intl. Symp. Antennas Propag., 1-4, Spokane, WA, Jul. 2011.

13. Hosseini, S. A., F. De Flaviis, and F. Capolino, "A highly directive single-feed Fabry-Perot cavity antenna for 60GHz technology," IEEE Intl. Symp. Antennas Propag., 1-2, Chicago, IL, Jul. 2012.
doi:10.1155/2012/192964

14. Burghignoli, P., G. Lovat, F. Capolino, et al., "Directive leaky-wave radiation from a dipole source in a wire-medium slab," IEEE Trans. Antennas Propag., Vol. 56, 1329-1339, 2008.
doi:10.1109/TAP.2008.922620

15. Chemglass Scientific Apparatus, www.chemglass.com, .

16. Gardelli, R., M. Albani, and F. Capolino, "Array thinning by using antennas in a Fabry-Perot cavity for gain enhancement," IEEE Trans. Antennas Propag., Vol. 54, No. 7, 1979-1990, 2006.
doi:10.1109/TAP.2006.877172

17. Kelly, J., G. Passalacqua, A. P. Feresidis, et al., "Simulations and measurements of dual-band 2D periodic leaky wave antenna," Loughborough Antennas and Propaga. Conf., 293-296, 2007.
doi:10.1109/LAPC.2007.367487

18. Ronciére, O., B. A. Arcos, R. Sauleau, et al., "Radiation performance of purely metallic waveguide-fed compact Fabry-Perot antennas for space applications," Microw. Opt. Technol. Lett., Vol. 49, 2216-2221, 2009.