Maintaining mutual coupling suppressing structure as simple as possible is becoming attractive in the electromagnetic and antenna community. A novel parasitic patch structure that can reduce mutual coupling between cavity-backed slot antenna elements is proposed and studied. The structure consists of only a simple rectangular patch inserted between the antenna elements and it is therefore low cost and straightforward to fabricate. The proposed structure can not only suppress the surface-mode propagation and reduce mutual coupling between slot antennas, but also improve radiation patterns. The features include small occupied area and very simple structure.
2. Xiao, S., M.-C. Tang, Y.-Y. Bai, S. Gao, and B.-Z. Wang, "Mutual coupling suppression in microstrip array using defected ground structure," IET Microw. Antennas Propag., Vol. 5, No. 12, 1488-1494, 2011.
doi:10.1049/iet-map.2010.0154
3. Jackson, D. R., J. T. Williams, A. K. Bhattacharyya, R. L. Smith, S. J. Buchheit, and S. A. Long, "Microstrip patch designs that do not excite surface waves," IEEE Trans. Antennas Propag., Vol. 41, No. 8, 1026-1037, Aug. 1993.
doi:10.1109/8.244643
4. Khayat, M. A., J. T. Williams, D. R. Jackson, and S. A. Long, "Mutual coupling between reduced surface-wave microstrip antennas," IEEE Trans. Antennas Propag., Vol. 48, No. 10, 1581-1593, Oct. 2000.
doi:10.1109/8.899675
5. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2936-2946, Oct. 2003.
doi:10.1109/TAP.2003.817983
6. Yang, L., M. Y. Fan, F. L. Chen, J. Z. She, and Z. H. Feng, "A novel compact electromagnetic-bandgap (EBG) Structure and its applications for microwave circuits," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 183-190, Jan. 2005.
7. Coulombe, M., K. S. Farzaneh, and C. Caloz, "Compact elongated mushroom (EM)-EBG structure for enhancement of patch antenna array performances," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1076-1086, Apr. 2010.
doi:10.1109/TAP.2010.2041152
8. Alexopoulos, N. G. and D. R. Jackson, "Fundamental superstrate (cover) effects on printed circuit antennas," IEEE Trans. Antennas Propag., Vol. 32, No. 8, 807-816, Aug. 1984.
doi:10.1109/TAP.1984.1143433
9. Gauthier, G. P., A. Courtay, and G. H. Rebeiz, "Microstrip antennas on synthesized low dielectric-constant substrate," IEEE Trans. Antennas Propag., Vol. 45, No. 8, 1310-1314, Aug. 1997.
doi:10.1109/8.611252
10. Papapolymerou, I., R. F. Frayton, and L. P. B. Katehi, "Micromachined patch antennas," IEEE Trans. Antennas Propag., Vol. 46, No. 2, 275-283, Feb. 1998.
doi:10.1109/8.660973
11. Colburn, J. S. and Y. Rahmat-Samii, "Patch antennas on externally perforated high dielectric constant substrates," IEEE Trans. Antennas Propag., Vol. 47, No. 12, 1785-1794, Dec. 1999.
doi:10.1109/8.817654
12. Li, Z., Z. Du, M. Takahashi, K. Satio, and K. Ito, "Reduction mutual coupling of MIMO antennas with parasitic elements for mobile terminals," IEEE Trans. Antennas Propag., Vol. 60, No. 2, 473-481, Feb. 2012.
doi:10.1109/TAP.2011.2173432
13. Li, Q. and Z. Shen, "Inverted microstrip-fed cavity-backed slot antenna," IEEE Antennas Wireless Propag. Lett., Vol. 1, 190-192, 2002.
14. Zheng, B. and Z. Shen, "Effect of a finite ground plane on microstrip-fed cavity-backed slot antenna," IEEE Trans. Antennas Propagat., Vol. 53, 862-865, Feb. 2005.
doi:10.1109/TAP.2004.841278
15. Liu, Y. and Z. Shen, "A compact dual-band cavity-backed slot antenna," IEEE Antennas Wireless Propag. Lett., Vol. 5, 4-6, 2006.
doi:10.1109/LAWP.2005.863611
16. Ko, S. C. K. and R. D. Murch, "A diversity antenna for external mounting on wireless handsets," IEEE Trans. Antennas Propagat., Vol. 49, 840-842, May 2001.
doi:10.1109/8.929639
17. Vaughan, R. G. and J. B. Andersen, "Antenna diversity in mobile communications," IEEE Trans. Veh. Technol., Vol. 36, 147-172, Nov. 1987.