Vol. 50

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2014-05-22

A Tunable Electromagnetic Bandgap Structure Using Plasma

By Asma Kallel, Jérôme Sokoloff, Thierry Callegari, and Olivier Pigaglio
Progress In Electromagnetics Research C, Vol. 50, 113-120, 2014
doi:10.2528/PIERC14031302

Abstract

A tunable electromagnetic-bangap (EBG) structure based on a double layer slotline using plasma is proposed. The plasma permittivity can be tuned by the electron density. The idea of integrating periodical plasma elements inside the slot to tune the stopband is investigated. An electron density and an electron collision frequency equal to 1.75 1013 cm-3 and 1010 s-1 respectively, are the plasma parameters selected in this study. The simulations reveal a shift rate of the second stopband equal to 6%. A new configuration of the structure is also proposed to adapt it better to the experimental requirements. Based on the simulation results, adding the plasma elements to the modified configuration shifts the stopband 4% and reduces its bandwidth by 43% (at -20 dB).

Citation


Asma Kallel, Jérôme Sokoloff, Thierry Callegari, and Olivier Pigaglio, "A Tunable Electromagnetic Bandgap Structure Using Plasma," Progress In Electromagnetics Research C, Vol. 50, 113-120, 2014.
doi:10.2528/PIERC14031302
http://jpier.org/PIERC/pier.php?paper=14031302

References


    1. Notomi, M., "Theory of light propagation in strongly modulated photonic crystals: Refractionlike behaviour in the vicinity of the photonic band gap," Physical Review B, Vol. 62, 10696-10705, 2000.
    doi:10.1103/PhysRevB.62.10696

    2. De Lustrac, A., F. Gadot, E. Akmansoy, and T. Brillat, "High-directivity planar antenna using controllable photonic bandgap material at microwave frequencies," Applied Physics Letters, Vol. 78, 4196-4198, 2001.
    doi:10.1063/1.1382853

    3. De Lustrac, A., F. Gadot, S. Cabaret, J. M. Lourtioz, A. Priou, E. Akmansoy, and T. Brillat, "Experimental demonstration of electrically controllable photonic crystals at centimeter wavelengths," Applied Physics Letters, Vol. 75, 1625-1627, 1999.
    doi:10.1063/1.124775

    4. Karim, M. F., A. Q. Liu, A. B. Yu, and A. Alphones, "MEMS-based tunable bandstop filter using electromagnetic bandgap (EBG) structures," APMC 2005, Asia-Paci¯c Microwave Conference Proceedings, Vol. 3, 4-7, Dec. 2005.

    5. Poilasne, G., P. Pouliguen, K. Mahdjoubi, L. Desclos, and C. Terret, "Active metallic photonic band-gap materials (MPBG): Experimental results on beam shaper," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 1, 117-119, 2000.
    doi:10.1109/8.827392

    6. John, S. and K. Busch, "Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum," Physical Review Letters, Vol. 83, No. 5, 967-970, 1999.
    doi:10.1103/PhysRevLett.83.967

    7. Yun, T.-Y. and K. Chang, "An electronically tunable photonic bandgap resonator controlled by piezoelectric transducer," IEEE MTT-S International Microwave Symposium Digest, Vol. 3, 1445-1447, Jun. 2000.

    8. Kuylenstierna, D., A. Vorobiev, G. Subramanyam, and S. Gevorgian, "Tunable electromagnetic bandgap structures based on ferroelectric films," IEEE Antennas and Propagation Society International Symposium, Vol. 4, 879-882, 2003.

    9. Sakai, O., T. Sakaguchi, and K. Tachibana, "Plasma photonic crystals in two-dimensional arrays f microplasmas," Contrib. Plasma Phys., Vol. 47, 96, 2007.
    doi:10.1002/ctpp.200710014

    10. Giroud, L., J. Sokoloff, and O. Pigaglio, "Reconfigurable EBG at 18 GHz using perimeter defects," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 8-9, 1029-1037, 2009.

    11. Lo, J., J. Sokoloff, T. Callegari, and J. P. Boeuf, "Reconfigurable electromagnetic band gap device sing plasma as a localized tunable defect," Applied Physics Letters, Vol. 96, No. 25, 251501, 2010.
    doi:10.1063/1.3454778

    12. Varault, S., B. Gabard, J. Sokoloff, and S. Bolioli, "Plasma-based localized defect for switchable coupling applications," Applied Physics Letters, Vol. 98, No. 13, 134103, 2011.
    doi:10.1063/1.3559605

    13. Varault, S., B. Gabard, T. Crepin, J. Sokoloff, and S. Bolioli, "Reconfigurable modified surface layers using plasma capillaries around the neutral inclusion regime," J. Appl. Phys., Vol. 115, 084906, 2014.
    doi:10.1063/1.4866816

    14. Boisbouvier, N., A. Louzir, F. Le Bolzer, A. C. Tarot, and K. Mahdjoubi, "A double layer EBG structure for slot-line printed devices," IEEE Antenna and Propagation Society International Symposium, Vol. 4, 3553-3556, 2004.

    15., , Ansoft Corporation, Online Available: http://www.ansoft.com.

    16. Quendo, C., E. Rius, C. Person, and M. Ney, "Integration of optimized low-pass filters in a bandpass filter for out-of-band improvement," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 12, 2376-2383, 2001.
    doi:10.1109/22.971624

    17. Tu, W.-H. and K. Chang, "Wide-band microstrip-to-coplanar stripline/slotline transitions," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 3, 1084-1089, 2006.
    doi:10.1109/TMTT.2005.864127