Vol. 50

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2014-05-04

Broadband Radar Cross-Section Reduction for Microstrip Patch Antenna Based on Hybrid AMC Structures

By Ying Liu, Hui Wang, Yongtao Jia, and Shu-Xi Gong
Progress In Electromagnetics Research C, Vol. 50, 21-28, 2014
doi:10.2528/PIERC14022502

Abstract

Two different kinds of artifical magnetic conductors (AMCs) are used to reduce the out-of-band radar cross section (RCS) of microstrip patch antenna. The principle of this method is based on the high impedance characteristic of the AMC structures. The simulated results show that out-of-band RCS of the proposed patch antenna is much lower than that of the reference antenna over the frequency range of 5-12 GHz. The in-band scattering characteristic of the microstrip patch antenna is analyzed, and two slots are cut on the patch antenna to reduce in-band RCS. Prototypes of the reference and designed antennas are manufactured and tested, and the measured and simulated results of the two antennas are in good agreement.

Citation


Ying Liu, Hui Wang, Yongtao Jia, and Shu-Xi Gong, "Broadband Radar Cross-Section Reduction for Microstrip Patch Antenna Based on Hybrid AMC Structures," Progress In Electromagnetics Research C, Vol. 50, 21-28, 2014.
doi:10.2528/PIERC14022502
http://jpier.org/PIERC/pier.php?paper=14022502

References


    1. Zhao, S.-C., B.-Z. Wang, and Q.-Q. He, "Broadband radar cross section reduction of a rectangular patch antenna," Progress In Electromagnetics Research, Vol. 79, 263-275, 2008.
    doi:10.2528/PIER07101002

    2. Li, Y., Y. Liu, and S.-X. Gong, "Microstrip antenna using ground-cut slots and miniaturization techniques with low RCS," Progress In Electromagnetics Research Letter, Vol. 1, 211-220, 2008.
    doi:10.2528/PIERC08021604

    3. Costa, F. and A. Monorchio, "A frequency selective radome with wideband absorbing properties," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 6, 2740-2747, Jun. 2012.
    doi:10.1109/TAP.2012.2194640

    4. Chen, H., X. Hou, and L. Deng, "Design of frequency selective surfaces radome for a planar slotted waveguide antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1231-1233, 2009.
    doi:10.1109/LAWP.2009.2035646

    5. Jiang, W., Y. Liu, S. Gong, and T. Hong, "Application of bionics in antenna radar cross section reduction," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1275-1278, 2009.
    doi:10.1109/LAWP.2009.2037168

    6. Xu, H.-Y., H. Zhang, K. Lu, and X.-F. Zeng, "A holly-leaf-shaped monopole antenna with low RCS for UWB application," Progress In Electromagnetics Research, Vol. 117, 35-50, 2011.

    7. Jang, H.-K., W.-J. Lee, and C.-G. Kim, "Design and fabrication of a microstrip patch antenna with a low radar cross section in the X-band," Smart Materials and Structures, Vol. 20, No. 1, 015007, Dec. 9, 2010.
    doi:10.1088/0964-1726/20/1/015007

    8. Liang, R. X., P. F. Zhang, S. X. Gong, and F. W. Wang, "A novel method for RCS reduction of the printed log-periodic dipole array," Journal of Electromagnetic Waves and Application, Vol. 26, No. 11-12, 1631-1640, Aug. 2012.
    doi:10.1080/09205071.2012.706787

    9. Li, Y.-Q., H. Zhang, Y.-Q. Fu, and N.-C. Yuan, "RCS reduction of ridged waveguide slot antenna array using EBG radar absorbing material," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 473-476, 2008.

    10. Li, M., S. Xiao, Y.-Y. Bai, and B.-Z. Wang, "An ultrathin and broadband radar absorber using resistive FSS," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 748-751, 2012.

    11. Costa, F., S. Genovesi, and A. Monorchio, "A frequency selective absorbing ground plane for low-RCS microstrip antenna arrays," Progress In Electromagnetics Research, Vol. 126, 317-332, 2012.
    doi:10.2528/PIER12012904

    12. Sievenpiper, D., L. Z. Romulo, F. J. Broas, N. G. AlexÄupolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, 1999.
    doi:10.1109/22.798001

    13. Zhang, J., J. Wang, M. Chen, and Z. Zhang, "RCS reduction of patch array antenna by electromagnetic band-gap structure," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1048-1051, 2012.
    doi:10.1109/LAWP.2012.2215832

    14. Ling, J., S.-X. Gong, B. Lu, H.-W. Yuan, W.-T. Wang, and S. Liu, "A microstrip printed dipole antenna with UC-EBG ground for RCS reduction," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 607-616, 2009.
    doi:10.1163/156939309788019868

    15. De Cos, M. E., Y. Alvarez, and F. Las Heras Andres, "A novel approach for RCS reduction using a combination of artificial magnetic conductors," Progress In Electromagnetics Research, Vol. 107, 147-159, 2010.
    doi:10.2528/PIER10060402

    16. De Cos, M. E., Y. Alvarez, and F. Las Heras Andres, "On the in°uence of coupling AMC resonances or RCS reduction in the SHF band," Progress In Electromagnetics Research, Vol. 117, 103-119, 2011.

    17. Iriarte Galarregui, J. C., A. Tellechea Pereda, and J. L. Martnez de Falcon, "Broadband radar cross-section reduction using AMC technology," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 12, 6136-6143, Dec. 2013.
    doi:10.1109/TAP.2013.2282915

    18. Shang, Y., S. Xiao, M.-C. Tang, Y.-Y. Bai, and B. Wang, "Radar cross-section reduction for a microstrip patch antenna using PIN diodes," IET Microwaves, Antennas & Propagation, Vol. 6, No. 6, 670-679, 2012.
    doi:10.1049/iet-map.2011.0460

    19. Volakis, J. L., A. Alexanian, and J. M. Lin, "Broadband RCS reduction of rectangle patch by using distributed loading," Electronics Letters, Vol. 28, No. 25, 2322-2323, Dec. 3, 1992.

    20. Pozar, D. M., "Radar cross-section of microstrip antenna on normally biased ferrite substrate," Electronics Letters, Vol. 25, No. 16, 196-198, Aug. 3, 1989.

    21. Hadarig, R. C., M. E. De Cos, and F. Las-Heras, "Microstrip patch antenna bandwidth enhancement using AMC/EBG structures," International Journal of Antennas and Propagation, Vol. 2012, 843754, 2011.

    22. Goussetis, G., A. P. Feresidis, and J. C. Vardaxoglou, "Tailoring the AMC and EBG characteristics of periodic metallic arrays printed on grounded dielectric substrate," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 1, 82-89, 2006.
    doi:10.1109/TAP.2005.861575