Vol. 50
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2014-05-04
Broadband Radar Cross-Section Reduction for Microstrip Patch Antenna Based on Hybrid AMC Structures
By
Progress In Electromagnetics Research C, Vol. 50, 21-28, 2014
Abstract
Two different kinds of artifical magnetic conductors (AMCs) are used to reduce the out-of-band radar cross section (RCS) of microstrip patch antenna. The principle of this method is based on the high impedance characteristic of the AMC structures. The simulated results show that out-of-band RCS of the proposed patch antenna is much lower than that of the reference antenna over the frequency range of 5-12 GHz. The in-band scattering characteristic of the microstrip patch antenna is analyzed, and two slots are cut on the patch antenna to reduce in-band RCS. Prototypes of the reference and designed antennas are manufactured and tested, and the measured and simulated results of the two antennas are in good agreement.
Citation
Ying Liu, Hui Wang, Yongtao Jia, and Shu-Xi Gong, "Broadband Radar Cross-Section Reduction for Microstrip Patch Antenna Based on Hybrid AMC Structures," Progress In Electromagnetics Research C, Vol. 50, 21-28, 2014.
doi:10.2528/PIERC14022502
References

1. Zhao, S.-C., B.-Z. Wang, and Q.-Q. He, "Broadband radar cross section reduction of a rectangular patch antenna," Progress In Electromagnetics Research, Vol. 79, 263-275, 2008.
doi:10.2528/PIER07101002

2. Li, Y., Y. Liu, and S.-X. Gong, "Microstrip antenna using ground-cut slots and miniaturization techniques with low RCS," Progress In Electromagnetics Research Letter, Vol. 1, 211-220, 2008.
doi:10.2528/PIERC08021604

3. Costa, F. and A. Monorchio, "A frequency selective radome with wideband absorbing properties," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 6, 2740-2747, Jun. 2012.
doi:10.1109/TAP.2012.2194640

4. Chen, H., X. Hou, and L. Deng, "Design of frequency selective surfaces radome for a planar slotted waveguide antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1231-1233, 2009.
doi:10.1109/LAWP.2009.2035646

5. Jiang, W., Y. Liu, S. Gong, and T. Hong, "Application of bionics in antenna radar cross section reduction," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1275-1278, 2009.
doi:10.1109/LAWP.2009.2037168

6. Xu, H.-Y., H. Zhang, K. Lu, and X.-F. Zeng, "A holly-leaf-shaped monopole antenna with low RCS for UWB application," Progress In Electromagnetics Research, Vol. 117, 35-50, 2011.

7. Jang, H.-K., W.-J. Lee, and C.-G. Kim, "Design and fabrication of a microstrip patch antenna with a low radar cross section in the X-band," Smart Materials and Structures, Vol. 20, No. 1, 015007, Dec. 9, 2010.
doi:10.1088/0964-1726/20/1/015007

8. Liang, R. X., P. F. Zhang, S. X. Gong, and F. W. Wang, "A novel method for RCS reduction of the printed log-periodic dipole array," Journal of Electromagnetic Waves and Application, Vol. 26, No. 11-12, 1631-1640, Aug. 2012.
doi:10.1080/09205071.2012.706787

9. Li, Y.-Q., H. Zhang, Y.-Q. Fu, and N.-C. Yuan, "RCS reduction of ridged waveguide slot antenna array using EBG radar absorbing material," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 473-476, 2008.

10. Li, M., S. Xiao, Y.-Y. Bai, and B.-Z. Wang, "An ultrathin and broadband radar absorber using resistive FSS," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 748-751, 2012.

11. Costa, F., S. Genovesi, and A. Monorchio, "A frequency selective absorbing ground plane for low-RCS microstrip antenna arrays," Progress In Electromagnetics Research, Vol. 126, 317-332, 2012.
doi:10.2528/PIER12012904

12. Sievenpiper, D., L. Z. Romulo, F. J. Broas, N. G. AlexÄupolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001

13. Zhang, J., J. Wang, M. Chen, and Z. Zhang, "RCS reduction of patch array antenna by electromagnetic band-gap structure," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1048-1051, 2012.
doi:10.1109/LAWP.2012.2215832

14. Ling, J., S.-X. Gong, B. Lu, H.-W. Yuan, W.-T. Wang, and S. Liu, "A microstrip printed dipole antenna with UC-EBG ground for RCS reduction," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 607-616, 2009.
doi:10.1163/156939309788019868

15. De Cos, M. E., Y. Alvarez, and F. Las Heras Andres, "A novel approach for RCS reduction using a combination of artificial magnetic conductors," Progress In Electromagnetics Research, Vol. 107, 147-159, 2010.
doi:10.2528/PIER10060402

16. De Cos, M. E., Y. Alvarez, and F. Las Heras Andres, "On the in°uence of coupling AMC resonances or RCS reduction in the SHF band," Progress In Electromagnetics Research, Vol. 117, 103-119, 2011.

17. Iriarte Galarregui, J. C., A. Tellechea Pereda, and J. L. Martnez de Falcon, "Broadband radar cross-section reduction using AMC technology," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 12, 6136-6143, Dec. 2013.
doi:10.1109/TAP.2013.2282915

18. Shang, Y., S. Xiao, M.-C. Tang, Y.-Y. Bai, and B. Wang, "Radar cross-section reduction for a microstrip patch antenna using PIN diodes," IET Microwaves, Antennas & Propagation, Vol. 6, No. 6, 670-679, 2012.
doi:10.1049/iet-map.2011.0460

19. Volakis, J. L., A. Alexanian, and J. M. Lin, "Broadband RCS reduction of rectangle patch by using distributed loading," Electronics Letters, Vol. 28, No. 25, 2322-2323, Dec. 3, 1992.

20. Pozar, D. M., "Radar cross-section of microstrip antenna on normally biased ferrite substrate," Electronics Letters, Vol. 25, No. 16, 196-198, Aug. 3, 1989.

21. Hadarig, R. C., M. E. De Cos, and F. Las-Heras, "Microstrip patch antenna bandwidth enhancement using AMC/EBG structures," International Journal of Antennas and Propagation, Vol. 2012, 843754, 2011.

22. Goussetis, G., A. P. Feresidis, and J. C. Vardaxoglou, "Tailoring the AMC and EBG characteristics of periodic metallic arrays printed on grounded dielectric substrate," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 1, 82-89, 2006.
doi:10.1109/TAP.2005.861575