A compact U-shaped defective ground structure (DGS) and an inverted U-shaped resonator are introduced in order to reduce the mutual coupling (MC) between two slotted microstrip antennas at two different resonance frequencies. The proposed DGS and resonator have the same electrical length and both are placed in between two patch antennas, as a technique to suppress the occurrence of MC at two different frequency bands. The DGS and the resonator offer stop bands at 2.45 GHz and 4.5 GHz respectively. Simulated results show a reduction in MC of 20 dB at 2.45 GHz band and 10 dB at 4.5 GHz band. We have developed experimental models that have proved this concept of MC reduction. Finally, the influence of other parameters of the proposed antenna at the presence of the combination of DGS and resonator in the array system has been studied. Prototype antennas for different combinations of DGS and resonator and two-element array integrated with DGS and resonator have been fabricated, measured and the idea has been verified. A good agreement is observed between measured and the simulated results.
2. Ouyang, J., F. Yang, and Z. M. Wang, "Reducing mutual coupling of closely spaced microstrip MIMO antennas for WLAN application," IEEE Antennas Wireless Propag. Lett., Vol. 10, 310-312, 2011.
doi:10.1109/LAWP.2011.2140310
3. Sato, H., Y. Koyanagi, K. Ogawa, and M. Takahashi, "A method of dual-frequency decoupling for two-element MIMO antenna," PIERS Proceedings, 1853-1857, Stockholm, Sweden, Aug. 12-15, 2013.
4. Chen, S. C., Y. S. Wang, and S. J. Chung, "A decoupling technique for increasing the port isolation between two strongly coupled antennas," IEEE Trans. Antennas Propag., Vol. 56, No. 12, 3650-3658, 2008.
doi:10.1109/TAP.2008.2005469
5. Sato, H., Y. Koyanagi, K. Ogawa, and M. Takahashi, "A method of dual-frequency decoupling for closely spaced two small antennas," IEICE Trans. B., Vol. J94-B-II, No. 9, 1104-1113, Sep. 2011 (in Japanese).
6. Zhu, F. G., J. D. Xu, and Q. Xu, "Reduction of mutual coupling between closely-packed antenna elements using defected ground structure," Electron. Lett., Vol. 45, No. 12, 601-602, 2009.
doi:10.1049/el.2009.0985
7. Mandal, M. K. and S. Sanyal, "A novel defected ground structure for planar circuits," IEEE Microw. Wirel. Compon. Lett., Vol. 16, No. 2, 93-95, 2006.
doi:10.1109/LMWC.2005.863192
8. Ahn, D., J. S. Park, C. S. Kim, J. Kim, Y. Qian, and T. Itoh, "A design of the low-pass filter using the novel microstrip defected ground structure," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 1, 86-93, 2001.
doi:10.1109/22.899965
9. Yang, F. and Y. R. Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2936-2946, 2003.
doi:10.1109/TAP.2003.817983
10. Zhang, L., J. A. Castaneda, and N. G. Alexopoulos, "Scan blindness free phased array design using PBG materials," IEEE Trans. Antennas Propag., Vol. 52, No. 8, 2000-2007, 2004.
doi:10.1109/TAP.2004.832516
11. Iluz, Z., R. Shavit, and R. Bauer, "Microstrip antenna phased array with electromagnetic band gap substrate," IEEE Trans. Antennas Propag., Vol. 52, No. 6, 1446-1453, 2004.
doi:10.1109/TAP.2004.830252
12. Farahani, H. S., M. Veysi, M. Kamyab, and A. Tadjalli, "Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate," IEEE Antennas Wireless Propag. Lett., Vol. 9, 57-59, 2010.
doi:10.1109/LAWP.2010.2042565
13. Fu, Y. and N. Yuan, "Elimination of scan blindness in phased array of microstrip patches using electromagnetic band gap materials," IEEE Antennas Wireless Propag. Lett., Vol. 3, No. 1, 63-65, 2004.
doi:10.1109/LAWP.2004.827891
14. Yu, A. and X. Zhang, "A novel method to improve the performance of microstrip antenna arrays using a dumbbell EBG structure," IEEE Antennas Wireless Propag. Lett., Vol. 2, No. 1, 170-172, 2003.
doi:10.1109/LAWP.2003.814773
15. Rajo-Iglesias, E., O. Quevedo-Teruel, and L. Inclan-Sanchez, "Mutual coupling reduction in patch antenna arrays by using a planar EBG structure and a multilayer dielectric substrate," IEEE Trans. Antennas Propag., Vol. 56, No. 6, 1648-1655, Jul. 2008.
doi:10.1109/TAP.2008.923306
16. Nikolic, M., A. Djordjevic, and A. Nehorai, "Microstrip antennas with suppressed radiation in horizontal directions and reduced coupling," IEEE Trans. Antennas Propag., Vol. 53, No. 11, 3469-3474, Nov. 2005.
doi:10.1109/TAP.2005.858847
17. Habashi, A., J. Nourinia, and C. Ghobadi, "Mutual coupling reduction between very closely spaced patch antennas using low-profile folded split-ring resonators," IEEE Antennas Wireless Propag. Lett., Vol. 10, 862-865, Aug. 22, 2011.
18. Farsi, S., H. Aliakbarian, B. Nauwelaers, and G. A. E. Vandenbosch, "Mutual coupling reduction between planar antenna by using a simple microstrip U-section," IEEE Antennas Wireless Propag. Lett., Vol. 11, 1501-1503, Dec. 9, 2012.
19. Bait-Suwailam, M. M., O. F. Siddiqui, and O. M. Ramahi, "Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators," IEEE Antennas Wireless Propag. Lett.,, Vol. 9, 876-878, 2010.
doi:10.1109/LAWP.2010.2074175
20. Ghosh, C. K. and S. K. Parui, "Reduction of mutual coupling between E-shaped microstrip antenna array by using a simple microstrip I-section," Microwave and Optical Technology Letter, Vol. 55, No. 11, 2544-2549, Nov. 2013.
doi:10.1002/mop.27928
21. Sainati, R. A., CAD of Micro Strip Antenna for Wireless Applications, Artech House Inc., 1996.