Vol. 47

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2014-01-30

Investigations for Performance Improvement of X-Shaped Rmsa Using Artificial Neural Network by Predicting Slot Size

By Mohammad Aneesh, Ashish Singh, Jamshed Ansari, Kamakshi, and Saiyed Salim Sayeed
Progress In Electromagnetics Research C, Vol. 47, 55-63, 2014
doi:10.2528/PIERC13122803

Abstract

In this paper, an application of artificial neural network based on multilayer perceptron (MLP) model is presented for predicting the slot size on the radiating patch for improvement of the performance of patch antenna. Several performance affecting parameters like resonance frequencies, gain, directivity, antenna efficiency, and radiation efficiency for dual band frequency are observed with the variation of slot size. For validation of this work, a prototype X-shaped patch antenna is fabricated using glass epoxy substrate and its performance parameters are measured experimentally and have been found in good agreement with ANN and simulated values.

Citation


Mohammad Aneesh, Ashish Singh, Jamshed Ansari, Kamakshi, and Saiyed Salim Sayeed, "Investigations for Performance Improvement of X-Shaped Rmsa Using Artificial Neural Network by Predicting Slot Size," Progress In Electromagnetics Research C, Vol. 47, 55-63, 2014.
doi:10.2528/PIERC13122803
http://jpier.org/PIERC/pier.php?paper=13122803

References


    1. Bahal, I. J. and P. Bhartia, Microstrip Antennas, Artech House, Boston, MA, 1985.

    2. Nakano, H. and K. Vichien, "Dual-frequency square patch antenna with rectangular notch," Electron. Lett., Vol. 25, No. 16, 1067-1068, 1989.
    doi:10.1049/el:19890714

    3. Lau, K. L., K. C. Kong, and K. M. Luk, "Dual-band stacked folded patch antenna," Electron. Lett., Vol. 43, No. 15, 789-790, 2007.
    doi:10.1049/el:20070878

    4. Singh, A., J. A. Ansari, K. Kamakshi, A. Mishra, and M. Aneesh, "Compact notch loaded half disk patch antenna for dualband operation," Ann. Telecommun., 2013, Doi: 10.1007/s12243-013-0383-6.

    5. Vegni, L. and A. Toscano, "Analysis of microstrip antennas using neural networks," IEEE Trans. Magn., Vol. 33, No. 2, 1414-1419, Mar. 1997.
    doi:10.1109/20.582522

    6. Mishra, R. K. and A. Patnaik, "Neural network-based CAD model for the design of square-patch antennas," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 12, 1890-1891, Dec. 1998.
    doi:10.1109/8.743842

    7. Patnaik, A. R., K. Mishra, G. K. Patra, and S. K. Dash, "An artificial neural network model for effective dielectric constant of microstrip line," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 11, 1697, Nov. 1997.
    doi:10.1109/8.650084

    8. Mishra, R. K. and A. Patnaik, "Designing rectangular patch antenna using the neurospectral method," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 8, 1914-1921, Aug. 2003.
    doi:10.1109/TAP.2003.814748

    9. Watson, P. M., K. C. Gupta, and R. L. Mahajan, "Development of knowledge based artificial neural network models for microwave components," Proc. IEEE MTT-S Int. Microw. Symp. Dig., Vol. 1, 9-12, 1998.

    10. Karaboga, D., K. Guney, S. Sagiroglu, and M. Erler, "Neural computation of resonance frequency of electrically thin and thick rectangular microstrip antennas," Inst. Elect. Eng. Proc., Microw. Antennas Propag., Vol. 146, No. 2, 155-159, Apr. 1999.
    doi:10.1049/ip-map:19990136

    11. Sagiroglu, S., K. Guney, and M. Erler, "Resonant frequency calculation for circular microstrip antennas using artificial neural networks," Int. J. RF, Microw. CAE, Vol. 8, 270-277, 1998.
    doi:10.1002/(SICI)1099-047X(199805)8:3<270::AID-MMCE10>3.0.CO;2-8

    12. Sagiroglu, S. and K. Guney, "Calculation of resonant frequency for an equilateral triangular microstrip antenna with the use of artificial neural networks," Microw. Opt. Technol. Lett., Vol. 14, No. 2, 89-93, 1997.
    doi:10.1002/(SICI)1098-2760(19970205)14:2<89::AID-MOP5>3.0.CO;2-H

    13. Gopalakrishnan, R. and N. Gunasekaran, "Design of equilateral triangular microstrip antennas using artificial neural networks," Proc. IEEE IWAT, 246-249, 2005.

    14. Guney, K., S. Sagiroglu, and M. Erler, "Generalized neural method to determine resonant frequencies of various microstrip antennas," Int. J. RF, Microw. CAE, Vol. 12, 131-139, 2002.
    doi:10.1002/mmce.10006

    15. Guney, K. and N. Sarikaya, "A hybrid method based on combining artificial neural network and fuzzy inference system for simultaneous computation of resonant frequencies of rectangular, circular, and triangular microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 3, 659-668, Mar. 2007.
    doi:10.1109/TAP.2007.891566

    16. Guney, K. and N. Sarikaya, "Concurrent neuro-fuzzy systems for resonant frequency computation of rectangular, circular, and triangular microstrip antennas," Progress In Electromagnetics Research, Vol. 84, 253-277, 2008.
    doi:10.2528/PIER08070603

    17. Turker, N., F. Gunes, and T. Yildirim, "Artificial neural design of microstrip antennas," Turk. J. Elec. Eng., Vol. 14, 445-453, 2006.

    18. Neog, D. K., S. S. Pattnaik, D. C. Panda, S. Devi, B. Khuntia, and M. Dutta, "Design of a wideband microstrip antenna and the use of artificial neural networks in parameter calculation," IEEE Antennas Propag. Mag., Vol. 47, No. 3, 60-65, Jun. 2005.
    doi:10.1109/MAP.2005.1532541

    19. Thakare, V. V. and P. K. Singhal, "Bandwidth analysis by introducing slots in microstrip antenna design using ANN," Progress In Electromagnetics Research M, Vol. 9, 107-122, 2009.
    doi:10.2528/PIERM09093002

    20. Thakare, V. V. and P. Singhal, "Microstrip antenna design using artificial neural networks," Int. J. RF, Microw. CAE, Vol. 20, 76-86, 2010.

    21. Robustillo, P., J. Zapata, J. A. Encinar, and M. Arrebola, "Design of a contoured-beam reflectarray for a EuTELSAT European coverage using a stacked-patch element characterized by an artificial neural network," IEEE Antennas Wireless Propag. Lett., Vol. 11, 977-980, 2012.
    doi:10.1109/LAWP.2012.2213567

    22. Wang, Z., S. Fang, Q. Wang, and H. Liu, "An ANN-based synthesis model for the single-feed circularly-polarized square microstrip antenna with truncated corners," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 12, 5989-5992, Dec. 2012.
    doi:10.1109/TAP.2012.2214195

    23. Freni, A., M. Mussetta, and P. Pirinoli, "Neural network characterization of reflectarray antennas," Int. J. Antennas Propag., Vol. 2012, 541354-1-541354-10, 2012.

    24. Akdagli, A., A. Toktas, A. Kayabasi, and I. Develi, "An application of artificial neural network to compute the resonant frequency of E-shaped compact microstrip patch antennas," Journal of Electrical Engineering, Vol. 64, No. 5, 317-322, 2013.
    doi:10.2478/jee-2013-0046

    25. Khan, T. and A. Dey, "Prediction of slot size and inserted air gap for improving the performance of rectangular microstrip patch antennas using artificial neural networks," IEEE Antennas Wireless Propag. Lett., Vol. 12, 1367-1371, Oct. 2013.

    26. IE3D. Ver. 14.0, Zeland Software, Inc., , Fremont, CA, USA, Oct. 2007.

    27. Higham, D. J. and N. J. Higham, "MATLAB guide," SIAM, Philadelphia, PA, USA, 2005.

    28. Sivia, J. S., A. P. S. Pharwaha, and T. S. Kamal, "Analysis and design of circular fractal antenna using artificial neural networks," Progress In Electromagnetics Research B, Vol. 56, 251-267, 2013.
    doi:10.2528/PIERB13091611

    29. Hagan, M. T. and M. B. Menhaj, "Training feedforward networks with the Marquardt algorithm," IEEE Trans. Neural Netw., Vol. 5, No. 6, 989-993, Nov. 1994.
    doi:10.1109/72.329697