Vol. 45

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-11-20

Triode Magnetron Injection Gun for 132 GHz Gyrotron for 200 MHz Dnp-NMR Application

By Nitin Kumar, Udaybir Singh, and Ashok Kumar Sinha
Progress In Electromagnetics Research C, Vol. 45, 191-201, 2013
doi:10.2528/PIERC13103103

Abstract

A 132 GHz gyrotron, operating at fundamental harmonic, is designed for the 200 MHz DNP-NMR experiment. In this article, the design of high quality electron beam source is presented. 2.5 dimensional code EGUN and 3 dimensional code CST-Particle Studio are used in the design and optimization of electron gun. The design of electron beam source is performed for a band of magnetic field values at the emitter surface and cavity center which is necessary for the frequency tunabilty of 2-3 GHz needed in DNP/NMR experiments. The results confirm the axial and transverse velocity spreads around 1% and 2.2% and a pitch factor of 1.5. The parametric analyses are also performed for the various electrical parameters such as emitter voltage, anode voltage, emitter magnetic field, etc.

Citation


Nitin Kumar, Udaybir Singh, and Ashok Kumar Sinha, "Triode Magnetron Injection Gun for 132 GHz Gyrotron for 200 MHz Dnp-NMR Application," Progress In Electromagnetics Research C, Vol. 45, 191-201, 2013.
doi:10.2528/PIERC13103103
http://jpier.org/PIERC/pier.php?paper=13103103

References


    1. Thumm, M., "Progress in gyrotron development," Fusion Engineering and Design, Vol. 66--68, 69-90, 2003.
    doi:10.1016/S0920-3796(03)00132-7

    2. Thumm, M., "State-of-the-art of High Power Gyro-devices and Free Electron Masers ," FZK, KIT, 2012.

    3. Gaponov, A. V., M. I. Petelin, and V. K. Yulpatov, "The induced radiation of excited classical oscillators and its use in high frequency electronics ," Radiophys. Quantum Electron., Vol. 10, 794-813, 1967.
    doi:10.1007/BF01031607

    4. Flyagin, V. A., A. V. Gaponov, I. Petelin, and V. K. Yulpatov, "The gyrotron," IEEE Trans. on Microwave Theory and Tech. , Vol. 25, 514-521, 1977.
    doi:10.1109/TMTT.1977.1129149

    5. Chu, K. R., "The electron cyclotron maser --- Relativity in action," Review of Modern Physics, Vol. 76, 489-540, 2004.
    doi:10.1103/RevModPhys.76.489

    6. Kumar, N., U. Singh, T. P. Singh, and A. K. Sinha, "A review on the applications of high power, high frequency microwave source --- Gyrotron," J. of Fusion Energy, Vol. 30, 257-276, 2011.
    doi:10.1007/s10894-010-9373-0

    7. Thumm, M., "Novel applications of millimeter and submillimeter wave gyro-devices," Int. J. of Infrared, Millimeter and Terahertz Wave, Vol. 22, 377-386, 2001.
    doi:10.1023/A:1010799620273

    8. Nanni, E. A., A. B. Barnes, R. G. Griffin, and R. J. Temkin, "THz dynamic nuclear polarization NMR," IEEE Tr. Terahertz Science and Technology, Vol. 1, 145-163, 2011.
    doi:10.1109/TTHZ.2011.2159546

    9. Bratman, V., M. Glyavin, T. Idehara, Y. Kalynov, A. Luchinin, V. Manuilov, S. Mitsudo, I. Ogawa, T. Saito, Y. I. Tatematsu, and V. Zapevalo, "Review of subterahertz and terahertz gyrodevices at IAP RAS and FIR FU ," IEEE Trans. on Plasma Sci., Vol. 37, 36-43, 2009.
    doi:10.1109/TPS.2008.2004787

    10. Maly, T., G. T. Debelouchina, V. S. Bajaj, K. N. Hu, C. G. Joo, M. L. Mak-Jurkauskas, J. R. Sirigiri, P. C. A. V. D. Wel, and J. Herzfeld, "Dynamic nuclear polarization at high magnetic fields," J. Chem. Physics, Vol. 128, 052211, 2008.
    doi:10.1063/1.2833582

    11. Bajaj, V. S., C. T. Farrar, M. K. Hornstein, I. Mastovsky, J. Vieregg, J. Bryant, B. El ena, K. E. Kreischer, R. J. Temkin, and R. G. Griffin , "Dynamic nuclear polarization at 9T using a novel 250 GHz gyrotron microwave source," J. Magnetic Resonance, Vol. 160, 85-90, 2003.
    doi:10.1016/S1090-7807(02)00192-1

    12. Kartikeyan, M. V., E. Borie, and M. K. A. Thumm, Gyrotrons-high Power Microwave and Millimeter Wave Technology, Springer-Verlag, Berlin, Germany, 2004.

    13. Edgcombe, C. J., "Gyrotron Oscillators: Their Principles and Practice," Taylor & Francis, 1993.

    14., EGUN, (Hermannsfeldt, W. B., Stanford Linear Accelerator Center) , Stanford University Report SLAC-226, 1979.

    15. Singh, U., A. Bera, R. R. Rao, and A. K. Sinha, "Synthesized parameters of MIG for 200 kW, 42 GHz gyrotron," J. of Infrared, Millimeter, and Terahertz Waves, Vol. 31, 533-541, 2010.

    16. Baird, J. M. and W. Lawson, "Magnetron injection gun (MIG) design for gyrotron applications," Int. J. Electronics, Vol. 61, 953-967, 1986.
    doi:10.1080/00207218608920932

    17. Lawson, W., "MIG scaling," IEEE Trans. on Plasma Sci., Vol. 16, 290-295, 1988.
    doi:10.1109/27.3827

    18. Tsimring, S. E., "Gyrotron electron beams: Velocity and energy spread and beam instabilities," Int. J. of Infrared, Millimeter and Terahertz Wave, Vol. 22, 1433-1468, 2001.
    doi:10.1023/A:1015034506088

    19., "User Manual: 2010 Version of CST, CST Particle Studio GmbH, Darmstadt,".
    doi:10.1023/A:1015034506088

    20. Singh, U., A. Bera, N. Kumar, L. P. Purohit, and A. K. Sinha, "Three-dimensional simulation of MIG for 42-GHz 200-kW gyrotron," IEEE Trans. on Plasma Sci., Vol. 38, 1546-1550, 2010.
    doi:10.1109/TPS.2010.2049748