Vol. 43
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2013-09-18
Design and Characterization of an Efficient Dual Patch Rectenna for Microwave Energy Recycling in the ISM Band
By
Progress In Electromagnetics Research C, Vol. 43, 93-108, 2013
Abstract
This paper describes the design, modeling and optimization of an efficient ISM band dual patch rectenna capable of achieving more than 80% RF-to-DC conversion efficiency at low/medium power densities. The circuit is based on a full-wave rectifier, designed and optimized at 2.45 GHz with ADS software and the FDTD algorithm. The performances of the rectenna have been accurately predicted using the full-wave 3D-FDTD method extended to lumped linear and non-linear elements. It exhibits 73% (<VDC = 1.1 V for RL= 1.2 kΩ) measured efficiency at a low power density of 14 μW/cm2 and 84% (VDC = 1.94 V) at 43 μW/cm2. The differences between the experimental and FDTD simulated efficiencies are less than 3%. The proposed circuit is particularly suitable for low/medium power recycling and power remote supply of wireless sensors, sensor nodes and actuators.
Citation
Hakim Takhedmit, Laurent Cirio, Odile Picon, Christian Vollaire, Bruno Allard, and Francois Costa, "Design and Characterization of an Efficient Dual Patch Rectenna for Microwave Energy Recycling in the ISM Band," Progress In Electromagnetics Research C, Vol. 43, 93-108, 2013.
doi:10.2528/PIERC13073105
References

1. Brown, W. C., "The history of power transmission by radio waves," IEEE Trans. Microw. Theory and Tech., Vol. 32, No. 9, 1230-1242, Sep. 1984.
doi:10.1109/TMTT.1984.1132833

2. Ren, Y. J. and K. Chang, "5.8-GHz circularly polarized dual-diode rectenna and rectenna array for microwave power transmission," IEEE Trans. Microw. Theory and Tech.,, Vol. 54, No. 4, 1495-1502, Nov. 2008.

3. Douyere, A., J. D. Lan, S. Luk, and F. Alicalapa, "High efficiency microwave rectenna circuit: Modeling and design," Electronics Letters, Vol. 44, No. 24, Nov. 2008.

4. Zbitou, J., M. Latrach, and S. Toutain, "Hybrid rectenna and monolithic integrated zero-bias microwave rectifier," IEEE Trans. Microw. Theory and Tech., Vol. 54, No. 1, 147-152, Jan. 2006.
doi:10.1109/TMTT.2005.860509

5. Strassner, B. and K. Chang, "5.8-GHz circularly polarized rectifying antenna for wireless microwave power transmission,", Vol. 50, No. 8, 1870-1876, Aug. 2002.
doi:10.1109/TMTT.2002.801312

6. Heikkinen, J. and M. Kivikoski, "Low-profile circularly polarized rectifying antenna for wireless power transmission at 5.8 GHz," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 4, 162-164, Apr. 2004.
doi:10.1109/LMWC.2004.827114

7. Heikkinen, J. and M. Kivikoski, "A novel dual-frequency circularly polarized rectenna," IEEE Antennas Wireless Propag. Lett., Vol. 2, 330-333, 2003.
doi:10.1109/LAWP.2004.824166

8. Akkermans, J. A. G., M. C. van Beurden, G. J. N. Doodeman, and H. J. Visser, "Analytical models for low-power rectenna design," IEEE Antennas Wireless Propag. Lett., Vol. 4, 187-190, 2005.
doi:10.1109/LAWP.2005.850798

9. Takhedmit, H., B. Merabet, L. Cirio, B. Allard, F. Costa, C. Vollaire, and O. Picon, "Design of a 2.45 GHz rectenna using a global analysis technique," Proceed. of the 3rd European Conference on Antennas and Propagation, EuCAP 2009, 2321-2325, Berlin, Germany, Mar. 23-27, 2009.

10. Marian, V., C. Vollaire, J. Verdier, and B. Allard, "An alternative energy source for low power autonomous sensors," Proceed. of the 5th European Conference on Antennas and Propagation, EuCAP 2011, 405-409, Rome, Italy, Apr. 11-15, 2011.

11. Ahn, C.-H., S.-W. Oh, and K. Chang, "A high gain rectifying antenna combined with reflectarray for 8 GHz wireless power ," IEEE International Symposium on Antennas and Propagation, APSURSI 2009, 1-4, Charleston, USA, Jun. 1-5, 2009.

12. Olgun, U., C.-C. Chen, and J. L. Volakis, "Investigation of rectenna array configurations for enhanced RF power investigation," IEEE Antennas Wireless Propag. Lett., Vol. 10, 262-265, 2011.
doi:10.1109/LAWP.2011.2136371

13. Epp, L. W., A. R. Khan, H. K. Smith, and R. P. Smith, "A compact dual-polarized 8.51-GHz rectenna for high-voltage (50 V) actuator applications," IEEE Trans. Microw. Theory and Tech., Vol. 48, No. 1, 111-119, Jan. 2000.
doi:10.1109/22.817479

14. Takhedmit, H., L. Cirio, B. Merabet, B. Allard, F. Costa, C. Vollaire, and O. Picon, "A 2.45-GHz dual-diode rectenna and rectenna arrays for wireless remote supply applications," Intern. Journ. of Microw. and Wireless Technolog., Vol. 3, Special issue 3, 251-258, Jun. 2011.

15. Monti, G., L. Corchia, and L. Tarricone, "ISM band rectenna using a ring loaded monopole," Progress In Electromagnetics Research C, Vol. 33, 1-15, 2012.

16. Monti, G. and F. Congedo, "UHF rectenna using a bowtie antenna," Progress In Electromagnetics Research C, Vol. 26, 181-192, 2012.
doi:10.2528/PIERC11102706

17. Falkenstein, E., M. Roberg, and Z. Popovic, "Low-power wireless power delivery," IEEE Trans. Microw. Theory and Tech., Vol. 60, No. 7, 2277-2286, Jul. 2012.
doi:10.1109/TMTT.2012.2193594

18. Farinholt, K. M., G. Park, and C. R. Farrar, "RF energy transmission for low-power wireless impedance sensor node," IEEE Sensors Journal, Vol. 9, No. 7, 793-800, Jul. 2009.
doi:10.1109/JSEN.2009.2022536

19. , , , Advanced Design System software, Agilent Technologies, 2000-2013, Available: http://www.home.agilent.com/.

20. , , , HSMS-286x, HSMS-282x series, Surface Mount Microwave Schottky Detector Diodes, 2001, Available: http://www.avagotech.com/.

21. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Edition, John Wiley & Sons, Inc., 2005.
doi:10.1109/22.127522

22. Taflove, A. and S. C. Hagness, Computational electrodynamics - The finite difference time domain method, 3rd Edition, Artech House Inc., 2005.
doi:10.1109/75.248520

23. Sui, W., D. A. Christensen, and C. H. Durney, "Extending the two dimensional FD-TD method to hybrid electromagnetic systems with active and passive lumped elements," IEEE Trans. Microw. Theory and Tech., Vol. 40, 724-730, 1992.
doi:10.1109/75.491504

24. Toland, B., B. Houshmand, and T. Itoh, "FDTD analysis of an active antenna," IEEE Microwave and Guided Wave Letters, Vol. 3, No. 11, 423-425, Nov. 1993.
doi:10.1109/22.575606

25. Kuo, C.-N., R.-B. Wu, B. Houshmand, and T. Itoh, "Modeling of microwave active devices using the fdtd analysis based on the voltage-source approach," IEEE Microwave and Guided Wave Letters, Vol. 6, No. 5, 199-201, May 1996.
doi:10.1049/el.2010.1075

26. Kuo, C.-N., B. Houshmand, and T. Itoh, "Full-wave analysis ok packaged microwave circuits with active and nonlinear devices: an FDTD approach," IEEE Trans. Microw. Theory and Tech., Vol. 45, No. 5, 819-826, May 1997.

27. Takhedmit, H., L. Cirio, B. Merabet, B. Allard, F. Costa, C. Vollaire, and O. Picon, "Efficient 2.45 GHz rectenna design including harmonic rejecting rectifier device," Electronics Letters, Vol. 46, No. 12, 811-812, Jun. 10th, 2010.
doi:10.1109/8.546249

28. Umashankar, K. and A. Taflove, "A novel method to analyze electromagnetic scattering of complex objects," IEEE Trans. on Electromagnetic Compatibility, Vol. 24, No. 4, 397-405, Nov. 1982.

29. Gedney, S. D., "An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices," IEEE Trans. Antennas and Propagation, Vol. 44, No. 12, 1630-1639, Dec. 1996.