Vol. 45
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2013-12-05
Subwavelength Spiral Slotted Waveguide Antenna
By
Progress In Electromagnetics Research C, Vol. 45, 265-279, 2013
Abstract
Integrating antennas into a load-bearing airframe structure has the potential for profound improvements in the capability of military and commercial airplanes, by allowing for substantially increased radiator and array size with reduced weight or drag penalties. Reducing the size of array elements can significantly improve the mechanical performance of the loadbearing antenna. The novel single element spiral slot cut in the broad-wall of a WR-90 rectangular waveguide proposed in this paper is smaller than a quarter of the operating wavelength (half of the size of a conventional rectangular slot). The small antenna element enables a slotted waveguide array to be realized without significantly degrading the mechanical performance in load bearing applications. The proposed spiral slot is compared with conventional rectangular slots and exhibits comparable performance in terms of total efficiency (representing coupling from waveguide mode to the slot) and peak realized gain. Total efficiency and peak realized gain of the spiral slot in travelling wave mode are significantly higher than those of a quarter wavelength rectangular slot element which has near zero radiation. The simulated results were validated by manufacturing the spiral slot placed on the broad-wall of a rectangular waveguide. Realized gain patterns of the spiral slot measured at the design frequency corroborate reasonably with the simulations.
Citation
Ali Daliri, Amir Galehdar, Wayne Rowe, Kamran Ghorbani, Chun H. Wang, and Sabu John, "Subwavelength Spiral Slotted Waveguide Antenna," Progress In Electromagnetics Research C, Vol. 45, 265-279, 2013.
doi:10.2528/PIERC13070403
References

1. Rengarajan, S. R., L. G. Josefsson, and R. S. Elliott, "Waveguide-fed slot antennas and arrays: A review," Electromagnetics, Vol. 19, No. 1, 3-22, 1999.
doi:10.1080/02726349908908622

2. Callus, P. J., Novel Concepts for Conformal Load-bearing Antenna Structure, Tech. Rep. DSTO-TR-2096, DSTO Air Vehicles Div. , Melbourne, VIC, Feb. 2008.
doi:http://dspace.dsto.defence.gov.au/dspace/bitstream/1947/9300/1/D

3. Sabat, J. W., "Structural Response of the Slotted Waveguide Antenna Sti®ened Structure Components under Compression," M.S. Thesis, Department of Aeronautics and Astronautics, Air Force Institute of Technology , 2010.
doi:http://www.dtic.mil/cgibin/GetTRDoc?Location=U2&doc=GetTRDoc.

4. Soutis, C., N. A. Fleck, and P. T. Curtis, "Hole-hole interaction in carbon fibre/epoxy laminates under uniaxial compression," Composites, Vol. 22, No. 1, 31-38, 1991.
doi:10.1016/0010-4361(91)90100-U

5. Bethe, H. A., "Theory of diffraction by small holes," Physical Review, Vol. 66, No. 7--8, 163-182, 1944.
doi:10.1103/PhysRev.66.163

6. Genet, C. and T. W. Ebbesen, "Light in tiny holes," Nature, Vol. 445, No. 7123, 39-46, 2007.
doi:10.1038/nature05350

7. Ghazi, G. and M. Shahabadi, "Modal analysis of extraordinary transmission through an array of subwavelength slits," Progress In Electromagnetics Research, Vol. 79, 59-74, 2008.
doi:10.2528/PIER07092402

8. Aydin, K., A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, "Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture ," Physical Review Letters, Vol. 102, No. 1, 013904, 2009.
doi:10.1103/PhysRevLett.102.013904

9. Cakmak, A. O., K. Aydin, E. Colak, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, "Enhanced transmission through a subwavelength aperture using metamaterials ," Applied Physics Letters, Vol. 95, No. 5, 052103-3, 2009.
doi:10.1063/1.3195074

10. Kang, L., V. Sadaune, and D. Lippens, "Numerical analysis of enhanced transmission through a single subwavelength aperture based on mie resonance single particle," Progress In Electromagnetics Research, Vol. 113, 211-226, 2011.

11. Nicholson, K. J., W. S. T. Rowe, P. J. Callus, and K. Ghorbani, "Split-ring resonator loading for the slotted waveguide antenna stiffened structure," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1524-1527, 2011.
doi:10.1109/LAWP.2011.2181474

12. Nicholson, K. J., W. S. T. Rowe, P. J. Callus, and K. Ghorbani, "Split-ring resonator loaded slot array," Proc. Asia-Pacific Microwave Conference (APMC), 1338-1341, 2011.

13. Nicholson, K. J., W. S. T. Rowe, P. J. Callus, and K. Ghorbani, "Small slot design for slotted waveguide antenna stiffened structure," Electronics Letters, Vol. 48, No. 12, 676-677, 2012.
doi:10.1049/el.2012.1328

14. Daliri, A., C. H. Wang, S. John, A. Galehdar, W. S. T. Rowe, K. Ghorbani, and P. J. Callus, "FEA evaluation of the mechanical and electromagnetic performance of slot log-spiral antennas in conformal load-bearing antenna structure (CLAS) ," Proc. ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems , 613-624, Sep. 2011.

15. Daliri, A., C. H. Wang, A. Galehdar, X. T. Tian, S. John, W. S. T. Rowe, and K. Ghorbani, "A slot spiral in carbon-fibre composite laminate as a conformal load-bearing antenna," Journal of Intelligent Material, Systems and Structures, Jun. 2013.

16. Daliri, A., A. Galehdar, W. S. T. Rowe, K. Ghorbani, S. John, and C. H. Wang, "A spiral shaped slot as a broad-band slotted waveguide antenna," Progress In Electromagnetics Research, Vol. 139, 177-192, 2013.

17. Nicholson, K. J. and P. J. Callus, "Antenna patterns from single slots in carbon fibre reinforced plastic waveguides," Tech. Rep. DSTO-TR-2389, DSTO Air Vehicles Div., Feb. 2010.
doi:http://www.dtic.mil/cgibin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf