Vol. 41

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-07-11

Candidate for Tissue Mimicking Material Made of an Epoxy Matrix Loaded with Alginate Microspheres

By Irena Zivkovic, Redouan Mahou, Klaus Scheffler, and Christine Wandrey
Progress In Electromagnetics Research C, Vol. 41, 227-238, 2013
doi:10.2528/PIERC13060908

Abstract

We present a new composite material containing calcium alginate microspheres incorporated into an epoxy matrix. The new material is mechanically stable and does not degrade over time. Its di-electric properties are extracted by model calculations and compared to the properties of some selected human tissues. Good agreement is observed, which identi es the proposed composite material as a good candidate for the use as a phantom material. The presented material is a two component composite and it is shown how its effective properties can be predicted by using appropriate mixing formulas.

Citation


Irena Zivkovic, Redouan Mahou, Klaus Scheffler, and Christine Wandrey, "Candidate for Tissue Mimicking Material Made of an Epoxy Matrix Loaded with Alginate Microspheres," Progress In Electromagnetics Research C, Vol. 41, 227-238, 2013.
doi:10.2528/PIERC13060908
http://jpier.org/PIERC/pier.php?paper=13060908

References


    1. Madsen, E. L., E. Kelly-Fry, and G. R. Frank, "Anthropomorphic phantoms for assessing systems used in ultrasound imaging of the compressed breast," Ultrasound in Medicine and Biology, Vol. 14, 183-201, 1988.
    doi:10.1016/0301-5629(88)90061-0

    2. Surry, K. J. M., H. J. B. Austin, A. Fenster, and T. M. Peters, "Poly (vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging," Physics in Medicine and Biology, Vol. 49, 5529-5546, 2004.
    doi:10.1088/0031-9155/49/24/009

    3. Fong, M. P., D. C. Keil, M. D. Does, and J. C. Gore, "Polymer gels for magnetic resonance imaging of radiation dose distributions at normal room atmosphere," Physics in Medicine and Biology, Vol. 46, 3105-3113, 2001.
    doi:10.1088/0031-9155/46/12/303

    4. Davis, S. K., H. Tandradinata, S. C. Hagness, and B. D. Van Veen, "Ultrawideband microwave breast cancer detection: A detection-theoretic approach using the generalized likelihood ratio test," IEEE Transactions on Biomedical Engineering, Vol. 52, 1237-1250, 2005.
    doi:10.1109/TBME.2005.847528

    5. Fukunaga, K., K. S. Watanabe, and Y. Yamanaka, "Dielectric properties of tissue-equivalent liquids and their effects on specific absorption rate," IEEE Transactions on Biomedical Engineering, Vol. 46, 126-129, 2004.

    6. Fukunaga, K., S. Watanabe, H. Asou, and K. Sato, "Dielectric properties of non-toxic tissue-equivalent liquids for radiowave safety tests," 2005 IEEE International Conference Dielectric Liquids, Vol. 26, 425-428, 2005.

    7. Chang, J. T., M. W. Fanning, P. M. Meaney, and K. D. Paulsen, "A conductive plastic for simulating biological tissue at microwave frequencies," IEEE Transactions on Electromagnetic Compatibility, Vol. 42, 76-81, 2000.
    doi:10.1109/15.831707

    8. Youngs, I. J., A. S. Treen, G. Fixter, and S. Holden, "Design of solid broadband human tissue simulant materials," IEE Proceedings Science, Measurements and Technology, Vol. 149, 323-328, 2002.
    doi:10.1049/ip-smt:20020647

    9. Gabriel, C., "Tissue equivalent material for hand phantoms," Physics in Medicine and Biology, Vol. 52, 4205-4210, 2007.
    doi:10.1088/0031-9155/52/14/012

    10. Nikawa, Y., M. Chino, and K. Kikuchi, "Soft and dry phantom modeling material using silicone rubber with carbon fiber," IEEE Transactions on Microwave Theory and Techniques, Vol. 44, 1949-1953, 1996.
    doi:10.1109/22.539954

    11. Lazebnik, M., E. L. Madsen, G. R. Frank, and S. C. Hagness, "Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications," Physics in Medicine and Biology, Vol. 50, 4245-4258, 2005.
    doi:10.1088/0031-9155/50/18/001

    12. Mazzara, G. P., R. W. Briggs, Z. Wu, and B. G. Steinbach, "Use of a modified polysaccharide gel in developing a realistic breast phantom for MRI," Magnetic Resonance Imaging, Vol. 14, 639-648, 1996.
    doi:10.1016/0730-725X(96)00054-9

    13. Kato, H., M. Hiraoka, and T. Ishida, "An agar phantom for hyperthermia," Medical Physics, Vol. 13, 396-398, 1986.
    doi:10.1118/1.595882

    14. Robinson, M. P., M. J. Richardson, J. L. Greent, and A. W. Preece, "New materials for dielectric simulation of tissues," Physics in Medicine and Biology, Vol. 36, 1565-1571, 1991.
    doi:10.1088/0031-9155/36/12/002

    15. Mitchell, M. D., H. L. Kundel, L. Axel, and P. M. Joseph, "Agarose as a tissue equivalent phantom material for NMR imaging," Magnetic Resonance Imaging, Vol. 4, 263-266, 1986.
    doi:10.1016/0730-725X(86)91068-4

    16. In, E., H. E. Naguib, and M. Haider, "Fabrication and characterization of polymer gel for MRI phantom with embedded lesion particles," Proceeding of SPIE, Vol. 8348, 2012.

    17. Freed, M., J. A. de Zwart, J. T. Loud, R. H. E. Khouli, K. J. Myers, M. H. Greene, J. H. Duyn, and A. Badano, "An anthropomorphic phantom for quantitative evaluation of breast MRI," Medical Physics, Vol. 38, 743-753, 2011.
    doi:10.1118/1.3533899

    18. Sunaga, T., H. Ikehira, S. Furukawa, M. Tamura, E. Yoshitome, T. Obata, H. Shinkai, S. Tanada, H. Murata, and Y. Sasaki, "Development of a dielectric equivalent gel for better impedance matching for human skin," Bioelectromagnetics, Vol. 24, 214-217, 2003.
    doi:10.1002/bem.10080

    19. Zivkovic, I., C. Wandrey, and B. Bogicevic, "Alginate beads and epoxy resin composites as candidates for microwave absorbers," Progress In Electromagnetics Research C, Vol. 28, 127-142, 2012.
    doi:10.2528/PIERC12021308

    20. Zivkovic, I. and A. Murk, "Free-space transmission method for the characterization of dielectric and magnetic materials at microwave frequencies," Microwave Materials Characterization, 73-90, InTech, Rijeka, Croatia, 2012.

    21. Leonard, J. B., K. R. Foster, and T. W. Athey, "Thermal properties of tissue equivalent phantom materials," IEEE Transactions on Biomedical Engineering, Vol. 31, 533-536, 1984.
    doi:10.1109/TBME.1984.325296

    22. Bini, M., A. Ignesti, L. Millanta, R. Olmi, N. Rubino, and R. Vanni, "The polyacrylamide as a phantom material for electromagnetic hyperthermia studies," IEEE Transactions on Biomedical Engineering, Vol. 31, 317-322, 1984.
    doi:10.1109/TBME.1984.325271

    23. Hartsgrove, G., A. Kraszewski, and A. Surowiec, "Simulated biological materials for electromagnetic radiation absorption studies," Bioelectromagnetics, Vol. 8, 29-36, 1987.
    doi:10.1002/bem.2250080105

    24. Kanda, M. Y., M. Ballen, S. Salins, C. K. Chou, and Q. Balzano, "Formulation and characterisation of tissue equivalent liquids used for RF densitometry and dosimetry measurements," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, 2046-2056, 2004.
    doi:10.1109/TMTT.2004.832001

    25. Lopresto, V., R. Pinto, R. Lodato, G. A. Lovisolo, and M. Cavagnaro, "Design and realization of tissue-equivalent ielectric simulators for dosimetric studies on microwave antennas for interstitial ablation," Physica Medica, Vol. 28, 245-253, 2012.
    doi:10.1016/j.ejmp.2011.09.001

    26. Kiley, E. M., V. V. Yakovlev, K. Ishizaki, and S. Vaucher, "Applicability study of classical and contemporary models for effective complex permittivity of metal powders," Journal of Microwave Power and Electromagnetic Energy, Vol. 46, 2012.

    27. Sihvola, A., Electromagnetic Mixing Formulas and Applications, IEE Electromagnetic Waves Series, Vol. 47, TJ International, UK, 1999.
    doi:10.1049/PBEW047E

    28. Merrill, W. M., R. E. Diaz, M. M. Lore, M. C. Squires, and N. G. Alexopoulos, "Effective medium theories for artificial materials composed of multiple sizes of spherical inclusions in a host continuum," IEEE Transactions on Antennas and Propagation, Vol. 47, 142-148, 1999.
    doi:10.1109/8.753004

    29. Yang, R. B., S. D. Hsu, and C. K. Lin, "Frequency-dependent complex permittivity and permeability of iron-based powders in 2-18 GHz," Journal of Applied Physics, Vol. 105, 2009.

    30. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Physics in Medicine and Biology, Vol. 41, 2271-2293, 1996.
    doi:10.1088/0031-9155/41/11/003