Vol. 41

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-07-12

A Compact Wideband Bandpass Filter Using Novel CSRR Loaded QMSIW Resonator with High Selectivity

By Hailin Cao, Sijia He, Hao Li, and Shizhong Yang
Progress In Electromagnetics Research C, Vol. 41, 239-254, 2013
doi:10.2528/PIERC13053006

Abstract

A novel quarter-mode substrate integrated waveguide (QMSIW) resonator with back-to-back triangular complementary split-ring resonators (CSRRs) etched on the waveguide surface is proposed in this paper. The proposed CSRR structures allow the implementation of a forward-wave passband propagating with high selectivity below the characteristic cutoff frequency of the conventional QMSIW. Utilizing the property of flexible open structure on QMSIWs' two sides, a cascaded quadruplet (CQ) bandpass filter (BPF) using the proposed QMSIW resonator and proximity coupling structure is presented. Compared with some other reported BPFs with SIW technique, the presented BPF using the novel QMSIW resonator has great improvements on size reduction and selectivity, simultaneously, with simple geometry. At the center frequency of 3.7 GHz, the designed BPF filter achieves a wideband with a fractional bandwidth up to 24.3% and a high selectivity with a shape factor of 1.23. The compact dimension of this filter is as small as 0.36λg×0.36λg, where λg is the guide wavelength at the center frequency. The proposed filter is simulated, fabricated and tested. The measured results are in good agreement with the simulation.

Citation


Hailin Cao, Sijia He, Hao Li, and Shizhong Yang, "A Compact Wideband Bandpass Filter Using Novel CSRR Loaded QMSIW Resonator with High Selectivity," Progress In Electromagnetics Research C, Vol. 41, 239-254, 2013.
doi:10.2528/PIERC13053006
http://jpier.org/PIERC/pier.php?paper=13053006

References


    1. Cassivi, Y., L. Perregrini, P. Arcioni, M. Bressan, K. Wu, and G. Conciauro, "Dispersion characteristics of substrate integrated rectangular waveguide," IEEE Microw. Wirel. Compon. Lett., Vol. 12, No. 9, 333-335, Sep. 2002.
    doi:10.1109/LMWC.2002.803188

    2. Deslandes, D., K. Wu, and , "Accurate modeling, wave mechanism, and design consideration of a substrate integrated waveguide," IEEE Trans. on Microw. Theory and Tech., Vol. 54, No. 6, 2516-2526, Jun. 2006.
    doi:10.1109/TMTT.2006.875807

    3. Djerafi, T., N. J. G. Fonseca, and K. Wu, "Design and implementation of a planar 4 x 4 Butler matrix in SIW technology for wide band high power applications," Progress In Electromagnetics Research B, Vol. 35, 29-51, 2011.
    doi:10.2528/PIERB11062004

    4. Cheng, Y. J., "Substrate integrated waveguide frequency-agile slot antenna and its multibeam application," Progress In Electromagnetics Research, Vol. 130, 153-168, 2012.

    5. Su, P., Z. X. Tang, and B. Zhang, "Push-push dielectric resonator oscillator using substrate integrated waveguide power combiner," Progress In Electromagnetics Research Letters,, Vol. 30, 105-113, 2012.
    doi:10.2528/PIERL11122302

    6. Wang, R., L. S. Wu, and X. L. Zhou, "Compact folded substrate integrated waveguide cavities and bandpass filter," Progress In Electromagnetics Research, Vol. 84, 135-147, 2008.
    doi:10.2528/PIER08071501

    7. Ismail, A., M. S. Razalli, M. A. Mahdi, R. S. A. R. Abdullah, N. K. Noordin, and M. F. A. Rasid, "X-band trisection substrate-integrated waveguide quasi-elliptic filter," Progress In Electromagnetics Research, Vol. 85, 133-145, 2008.
    doi:10.2528/PIER08081802

    8. Huang, Y. M., Z. H. Shao, and L. F. Liu, "A substrate integrated waveguide bandpass filter using novel defected ground structure shape," Progress In Electromagnetics Research, Vol. 135, 201-213, 2013.

    9. Wang, Y. Q., W. Hong, Y. D. Dong, B. Liu, H. J. Tang, J. X. Chen, X. X. Yin, K.Wu, "Half mode substrateintegrated waveguide (HMSIW) bandpass filter," IEEE Microw. Wirel. Compon. Lett., Vol. 17, No. 4, 265-267, Apr. 2007.
    doi:10.1109/LMWC.2007.892958

    10. Song, Q. Y., H. R. Cheng, X. H. Wang, L. Xu, X. Q. Chen, and X. W. Shi, "Novel wideband bandpass filter integrating HMSIW and DGS," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14-15, 2031-2040, 2009.
    doi:10.1163/156939309789932412

    11. Gong, K., W. Hong, H. J. Tang, and J. X. Chen, "C-band bandpass filter based on half mode substrate integrated waveguide (HMSIW) cavities," 2009 Asia-Pacific Microwave Conference, Singapore, Dec. 2009.

    12. Wang, , Z., X. Li, S. Zhou, B. Yan, R.-M. Xu, and W. Lin, "Half mode substrate integrated folded waveguide (HMSIFW) and partial H-plane bandpass filter," Progress In Electromagnetics Research, Vol. 101, 203-216, 2010.
    doi:10.2528/PIER10011201

    13. Zhang, Z., N. Yang, and K. Wu, "5 GHz bandpass filter demonstration using quarter-mode substrate integrated waveguide cavity for wireless system," 2009 Radio and Wireless Symposium, San Diego, Jan. 2009.

    14. Chen, X. P. and K. Wu, "Substrate integrated waveguide cross-coupled filter with negative coupling structure," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 1, 2008.
    doi:10.1109/TMTT.2007.912222

    15. Guo, Z., K. S. Chin, W. Che, and C. C. Chang, "Cross-coupled bandpass filters using QMSIW cavities and S-shaped slot coupling structures," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 2, 160-167, 2013.
    doi:10.1080/09205071.2013.741514

    16. Falcone, F., T. Lopetegi, J. D. Baena, R. Marqudes, F. Martin, and M. Sorolla, "Effective negative-ε stop-band microstrip lines based on complementary split ring resonators," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 6, 280-282, Jun. 2004.
    doi:10.1109/LMWC.2004.828029

    17. Zhang, X., Z. Yu, and J. Xu, "Novel band-pass substrate integrated waveguide (SIW) filter based on complementary split ring resonators (CSRRs)," Progress In Electromagnetics Research, Vol. 72, 39-46, 2007.
    doi:10.2528/PIER07030201

    18. Wu, L. S., X. L. Zhou, Q. F. Wei, and W. Y. Yin, "An extended doublet substrate integrated waveguide (SIW) bandpass filter with a complementary split ring resonator (CSRR)," IEEE Microw. Wirel. Compon. Lett., Vol. 19, No. 12, Dec. 2009.
    doi:10.1109/LMWC.2009.2034034

    19. Dong, Y. D., T. Yang, and T. Itoh, "Substrate integrated waveguide loaded by complementary split-ring resonators and its applications to miniaturized waveguide filters," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 9, 2211-2223, Sept. 2009.
    doi:10.1109/TMTT.2009.2027156

    20. Zhang, Q. L., W. Y. Yin, S. L. He, and L. S. Wu, "Compact substrate integrated waveguide (SIW) bandpass filter with complementary split-ring resonators (CSRRs)," IEEE Microw. Wirel. Compon. Lett., Vol. 20, No. 8, Aug. 2010.

    21. Dong, Y. D. and T. Itoh, "Substrate integrated waveguide loaded by complementary split-ring resonators for miniaturized diplexer design," IEEE Microw. Wirel. Compon. Lett., Vol. 21, No. 1, Jan. 2011.
    doi:10.1109/LMWC.2010.2091263

    22. Jiang, W., W. Shen, L. Zhou, and W. Y. Yin, "Miniaturized and high-selectivity substrate integrated waveguide (SIW) bandpass filter loaded by complementary split-ring resonators (CSRRs)," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 11-12, 1448-1459, Aug. 2012.
    doi:10.1080/09205071.2012.702203

    23. Xu, Z. Q., Y. Shi, C. Y. Xu, and P. Wang, "A novel dual mode substrate integrated waveguide filter with mixed source-load coupling (MSLC)," Progress In Electromagnetics Research, Vol. 136, 595-606, 2013.

    24. Chu, Q. X. and H. Wang, "A compact open-loop filter with mixed electric and magnetic coupling," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 2, Feb. 2008.
    doi:10.1109/TMTT.2007.914642

    25. Lee, K., T. H. Lee, Y. S. Kim, and J. Lee, "New negative coupling structure for substrate-integrated cavity resonators and its application to design of an elliptic response filter," Progress In Electromagnetics Research, Vol. 137, 117-127, 2013.

    26. Jedrzejewski, A., N. Leszczynska, L. Szydlowski, and M. Mrozowski, "Zero-pole approach to computer aided design of in-line siw filters with transmission zeros," Progress In Electromagnetics Research, Vol. 131, 517-533, 2012.

    27. Hong, J. S. and M. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, Inc., 2001.
    doi:10.1002/0471221619