Vol. 41

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-07-09

A 6.0 GHz Small Printed Monopole Antenna for Wireless Implantable Body Area Network (Wiban) Applications

By Nur Hidayah Ramli, Muhammad Ramlee Kamarudin, Noor Asmawati Samsuri, Ezla Najwa Ahyat, Amuda Yusuf Abdulrahman, and Mohd Faizal Bin Jamlos
Progress In Electromagnetics Research C, Vol. 41, 189-200, 2013
doi:10.2528/PIERC13052811

Abstract

Wireless implantable body area network (WiBAN) is useful for monitoring vital human parameters in medical diagnosis such as breast cancer, heart attack and high blood pressure. The main objective of this paper is to design a small printed monopole antenna for WiBAN applications at 6.0 GHz. The small implantable antenna was tested in a lossy environment by being submerged into canola oil that mimics the dielectric properties of human breast fat tissue. The antenna performances were measured by using vector network analyzer (VNA) in order to evaluate the return loss and operating bandwidth of the antenna. The other parameters such as efficiency, radiation pattern and gain are evaluated by simulation of CST Studio 2012 software. When compared, there is good agreement between the simulation and measurement results. The simulated antenna gain and efficiency are 5.8 dBi and 97%, respectively, when submerged into canola oil. The antenna radiation pattern is directional, and it has 6 lobes implying its coverage in more directions which is of good benefit due to body movement. The antenna's polarization was tested by placing a wideband antenna at several degrees around the proposed antenna. The value of S21 was also analyzed to investigate the path gain of the selected links.

Citation


Nur Hidayah Ramli, Muhammad Ramlee Kamarudin, Noor Asmawati Samsuri, Ezla Najwa Ahyat, Amuda Yusuf Abdulrahman, and Mohd Faizal Bin Jamlos, "A 6.0 GHz Small Printed Monopole Antenna for Wireless Implantable Body Area Network (Wiban) Applications," Progress In Electromagnetics Research C, Vol. 41, 189-200, 2013.
doi:10.2528/PIERC13052811
http://jpier.org/PIERC/pier.php?paper=13052811

References


    1. Hall, P. S. and Y. Hao Eds., Antennas and Propogation for Body Centric Wireless Communications, Artech House, Boston, London, 2006.

    2. Soontornpipit, P., C. M. Furse, and Y. C. Chung, "Design of implantable microstrip antenna for communication with medical implants," IEEE Trans. Microwave Theory Tech., Vol. 52, 1944-1951, Aug. 2004.
    doi:10.1109/TMTT.2004.831976

    3. Kim, J. and Y. R. Samii, "Implanted antenna inside a human body: Simulation, designs and characterizations," IEEE Trans. Microwave Theory Tech., Vol. 52, 1934-1943, Aug. 2004.
    doi:10.1109/TMTT.2004.832018

    4. Xia, W., K. Saito, M. Takahashi, and K. Ito, "Performances of an implanted cavity slot antenna embedded in the human arm," IEEE Trans. on Antennas and Propag., Vol. 57, 894-899, Apr. 2009.
    doi:10.1109/TAP.2009.2014579

    5. Hall, P. S., Z. H. Hu, and Y. I. Nechayev, "Characterisation of narrowband communication channels on the human body at 2.45 GHz," IET Microw. Antennas Propag., Vol. 4, 722-732, 2010.
    doi:10.1049/iet-map.2009.0094

    6. Panescu, D., "Wireless communication systems for implantable medical devices," IEEE Engineering in Medicine and Biology Magazine, Vol. 27, No. 2, 96-101, Apr. 2008.
    doi:10.1109/EMB.2008.915488

    7. Vidal, N., S. Curto, J. M. Lopez-Villegas, J. Sieiro, and F. M. Ramos, "Detuning study of implantable antennas inside the human body," Progress In Electromagnetics Research, Vol. 124, 265-283, 2012.
    doi:10.2528/PIER11120515

    8. Germio, J., J. Parron, and J. Soler, "Human body effects on implantable antennas for ISM bands applications: Model comparison and propagation losses study," Progress In Electromagnetics Research, Vol. 110, 437-452, 2010.

    9. Kamarudin, M. R., Y. I. Nechayev, and P. S. Hall, "Performance of antennas in the on-body environment," Antenna and Propagation Society International Symposium, Vol. 3A, 475-478, 2005.

    10. Ito, K., I. Ida, and M.-S. Wu, "Body effect on characteristics of small loop antenna in pager systems," Antenna and Propagation Society International Symposium, Vol. 2, 1081-1084, 1992.

    11. Noroozi, Z. and F. Hojjat-Kashani, "Three-dimensional FDTD analysis of the dual-band implantable antenna for continuous glucose monitoring," Progress In Electromagnetics Research Letters, Vol. 28, 9-21, 2012.
    doi:10.2528/PIERL11070113

    12. Gao, Y., et al., "Band-notched ultra-wideband ring-monopole antenna," Microwave and Optical Technology Letters, Vol. 48, No. 1, 125-126, 2006.
    doi:10.1002/mop.21283

    13. Liu, J., K. P. Esselle., S. G. Hay, and S. S. Zhong, "Study of an extremely wideband monopole antenna with triple band notch characteristics," Progress In Electromagnetics Research, Vol. 123, 143-158, 2012.
    doi:10.2528/PIER11110401

    14. Chen, B., Y. C. Jiao, Y. C. Ren, L. Zhang, and F. S. Zhang, "Design of open slot antenna for bandwidth enhancement with a rectangular stub," Progress In Electromagnetics Research Letters, Vol. 25, 109-115, 2011.

    15. Sadat, S., M. Fardis, G. Geran, and G. Dadashzadeh, "A compact microstrip square ring slot antenna for UWB applications," Progress In Electromagnetics Research Letters, Vol. 67, 173{-179, 2007.

    16. Xie, Y., L. Li, C. Zhu, and C.-H. Liang, "A novel dual-band patch antenna with complementary split ring resonators embedded in the ground plane," Progress In Electromagnetics Research Letters, Vol. 25, 117-126, 2011.

    17. Lee, W. S., K. S. Oh, and J. W. Yu, "A wideband planar monopole antenna array with circular polarized and band notched characteristics," Progress In Electromagnetics Research, Vol. 128, 381-398, 2012.

    18. Zhang, S.-M., F.-S. Zhang, W.-M. Li, W.-Z. Li, and H.-Y. Wu, "A multi-band monopole antenna with two different slots for WLAN and wimax applications," Progress In Electromagnetics Research Letters, Vol. 28, 173-181, 2012.

    19. Li, B., Z.-H. Yan, and C. Wang, "Dual rectangular ring with open-ended CPW-FED monopole antenna for WiMAX/WLAN applications," Progress In Electromagnetics Research Letters, Vol. 25, 101-107, 2011.

    20. Teng, X. Y., X. M. Zhang, Z. X. Yang, Y. Wang, Y. Li, Q. F. Dai, and Z. Zhang, "A compact CPW-FED omni-directional monopole antenna for WLAN and RFID applications," Progress In Electromagnetics Research Letters, Vol. 32, 91-99, 2012.

    21. Ramli, N. H., M. R. Kamarudin, N. A. Samsuri, and E. A. Ahyat, "Investigation on a compact ring printed monopole antenna for wireless implantable body area network (WiBAN) applications," Microwave and Optical Technology Letters, Vol. 55, No. 5, 1053-1058, 2013.
    doi:10.1002/mop.27503

    22. Sill, J. M., "Second generation experimental system for tissue sensing adaptive radar,", Master's Thesis, Department of Electrical and Computer Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada, 2005.

    23. Ito, K., I. Ida, and M.-S. Wu, "Body effect on characteristics of small loop antenna in pager systems," Antennas and Propagation Society International Symposium, Vol. 2, 1081-1084, 1992.