Vol. 41

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-06-10

Design of a Printable, Compact Parasitic Array with Dual Notches

By Jay J. Yu and Sungkyun Lim
Progress In Electromagnetics Research C, Vol. 41, 1-12, 2013
doi:10.2528/PIERC13050208

Abstract

A compact, parasitic array antenna printed on both sides of the substrate to generate dual Notches is introduced. The antenna is composed of one driver and two directors. Both directors are discretely segmented and are twisted with each other to minimize the radiation interference from one director to the other at each resonance. The antenna is optimized for realized gains in the director direction at the two resonant frequencies. The optimized antenna has been fabricated and measured to verify the simulated results. At both resonances, the measured realized gains in the director direction are greater than 8.5 dBi, and the front-to-back ratios are more than 10 dB.

Citation


Jay J. Yu and Sungkyun Lim, "Design of a Printable, Compact Parasitic Array with Dual Notches," Progress In Electromagnetics Research C, Vol. 41, 1-12, 2013.
doi:10.2528/PIERC13050208
http://jpier.org/PIERC/pier.php?paper=13050208

References


    1. Lim, S. and H. Ling, "A printable Yagi antenna with closely spaced elements," Microwave Opt. Technol. Lett., Vol. 49, No. 9, 2106-2109, Sep. 2007.
    doi:10.1002/mop.22660

    2. Lim, S. and H. Ling, "Comparing electrically small folded conical and spherical helix antennas based on a genetic algorithm optimization," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11-12, 1585-1593, 2009.

    3. Stutzman, W. L. and G. A. Thiele, Antenna Theory and Design, John Wiley & Sons, Inc., 1998.

    4. Lim, S. and H. Ling, "Design of a closely spaced, folded Yagi antenna," IEEE Antenna Wireless Propag. Lett., Vol. 5, No. 1, 302-305, 2006.
    doi:10.1109/LAWP.2006.878892

    5. Sedighy, S. H., A. R. Mallahzadeh, M. Soleimani, and J. Rashed-Mohassel, "Optimization of printed Yagi antenna using invasive weed optimization (IWO)," IEEE Antenna Wireless Propag. Lett., Vol. 9, No. 3, 1275-1278, 2010.
    doi:10.1109/LAWP.2011.2105458

    6. Mehrabian, A. R. and C. Lucas, "A novel numerical optimization algorithm inspired from weed colonization," Ecol. Inform., Vol. 1, No. 4, 355-366, 2006.
    doi:10.1016/j.ecoinf.2006.07.003

    7. Schlub, R., J. Lu, and T. Ohira, "Seven-element ground skirt monopole ESPAR antenna design from a genetic algorithm and the fiinite element method," IEEE Trans. Antennas Propagat., Vol. 51, No. 11, 3033-3039, Nov. 2003.
    doi:10.1109/TAP.2003.818790

    8. Islam, M. R., N. H. Chamok, and M. Ali, "Switched parasitic dipole antenna array for high-data-rate body-worn wireless applications," IEEE Antenna Wireless Propag. Lett., Vol. 11, 693-696, 2012.
    doi:10.1109/LAWP.2012.2204949

    9. Lim, S., "Design of a multi-directional, high gain, compact Yagi antenna," IEEE Antennas Wireless Propagat. Lett., Vol. 8, 418-420, 2009.

    10. Basilio, L. I., R. L. Chen, J. T. Williams, and D. R. Jackson, "A new planar dual-band GPS antenna designed for reduced susceptibility to low-angle multipath," IEEE Trans. Antennas Propagat., Vol. 55, No. 8, 2358-2366, Aug. 2007.
    doi:10.1109/TAP.2007.901818

    11. Yu, J. J. and S. Lim, "Design of multi-band, compact parasitic array with twisted, helical directors," IEEE Trans. Antennas Propagat., Vol. 61, No. 1, 444-449, 2013.
    doi:10.1109/TAP.2012.2220091

    12. Rahmat-Samii, Y. and E. Michielssen, Electromagnetic Optimization by Genetic Algorithms, John Wiley & Sons, Inc., 1999.

    13. Sigher, T. S. and A. A. Kishk, "Antenna modeling by infinitesimal dipoles using genetic algorithms," Progress In Electromagnetics Research, Vol. 52, 225-254, 2005.
    doi:10.2528/PIER04081801

    14., , IE3D, Mentor Graphics, Inc..

    15. Elliott, R. S., Antenna Theory and Design, Prentice Hall, 1981.