Vol. 40

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-05-23

Guided-Mode Resonance Filter Compensated to Operate on a Curved Surface

By Raymond C. Rumpf, Marvin Gates, Carrie L. Kozikowski, and William A. Davis
Progress In Electromagnetics Research C, Vol. 40, 93-103, 2013
doi:10.2528/PIERC13041209

Abstract

Guided-mode resonance filters (GMRFs) are highly compact structures that can produce a strong frequency response from a single thin layer of dielectric. When a GMRF is formed onto a curved surface, the local angle of incidence varies over the aperture of the device and the overall performance significantly degrades. In the present work, we spatially varied the grating period of a curved GMRF to perfectly compensate for the local angle of incidence. The performance of the curved device actually surpassed that of a flat device because it also compensated for the spherical wave front from the source. This paper summarizes our design process and experimental results obtained around 25 GHz.

Citation


Raymond C. Rumpf, Marvin Gates, Carrie L. Kozikowski, and William A. Davis, "Guided-Mode Resonance Filter Compensated to Operate on a Curved Surface," Progress In Electromagnetics Research C, Vol. 40, 93-103, 2013.
doi:10.2528/PIERC13041209
http://jpier.org/PIERC/pier.php?paper=13041209

References


    1. Magnusson, R. and S. Wang, "New principle for optical filters Applied Physics Letters,", Vol. 61, 1022-1024, 1992.
    doi:10.1364/AO.32.002606

    2. Wang, S. and R. Magnusson, "Theory and applications of guided-mode resonance filters," Applied Optics, Vol. 32, 2606-2613, 1993.
    doi:10.1364/OL.23.001556

    3. Liu, Z., S. Tibuleac, D. Shin, P. Young, and R. Magnusson, "High-efficiency guided-mode resonance filter," Optics Letters, Vol. 23, 1556-1558, 1998.

    4. Magnusson, R. and S.-S. Wang, "Optical guided-mode resonance filter,", Google Patents, 1993.
    doi:10.1364/OE.15.003452

    5. Rumpf, R. C. and E. G. Johnson, "Modeling fabrication to accurately place GMR resonances," Optics Express, Vol. 15, 3452-3464, 2007.

    6. Barton, J. H., R. C. Rumpf, R. W. Smith, C. L. Kozikowski, and P. A. Zellner, "All-dielectric frequency selective surfaces with few number of periods," Progress In Electromagnetics Research B, Vol. 41, 269-283, 2012.
    doi:10.1109/8.192167

    7. Bertoni, H. L., L.-H. Cheo, and T. Tamir, "Frequency-selective reflection and transmission by a periodic dielectric layer," IEEE Transactions on Antennas and Propagation, Vol. 37, 78-83, 1989.
    doi:10.1109/TAP.2012.2194665

    8. Coves, A., S. Marini, B. Gimeno, and V. Boria, "Full-wave analysis of periodic dielectric frequency-selective surfaces under plane wave excitation," IEEE Transactions on Antennas and Propagation, Vol. 60, 2760-2769, 2012.

    9. Li, L. and D. H. Werner, "Design of all-dielectric frequency selective surfaces using genetic algorithms combined with the finite element-boundary integral method," 2005 IEEE Antennas and Propagation Society International Symposium, 376-379, 2005.
    doi:10.1109/22.842027

    10. Tibuleac, S., R. Magnusson, T. A. Maldonado, P. P. Young, and T. R. Holzheimer, "Dielectric frequency-selective structures incorporating waveguide gratings," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, 553-561, 2000.
    doi:10.1109/8.668908

    11. Zuffada, C., T. Cwik, and C. Ditchman, "Synthesis of novel all-dielectric grating filters using genetic algorithms," IEEE Transactions on Antennas and Propagation, Vol. 46, 657-663, 1998.
    doi:10.1364/AO.45.005740

    12. Boonruang, S., A. Greenwell, and M. Moharam, "Multiline two-dimensional guided-mode resonant filters," Applied Optics, Vol. 45, 5740-5747, 2006.
    doi:10.1364/JOSAA.20.000481

    13. Fehrembach, A.-L. and A. Sentenac, "Study of waveguide grating eigenmodes for unpolarized filtering applications," JOSA A, Vol. 20, 481-488, 2003.
    doi:10.1364/JOSAA.18.001261

    14. Mizutani, A., H. Kikuta, K. Nakajima, and K. Iwata, "Nonpolarizing guided-mode resonant grating filter for oblique incidence," JOSA A, Vol. 18, 1261-1266, 2001.

    15. Cannistra, A., M. Poutous, E. Johnson, and T. Suleski, "Fabrication of guided mode resonance filters on conformal surfaces," Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7927, 23, 2011.
    doi:10.1364/OL.36.001155

    16. Cannistra, A. T., M. K. Poutous, E. G. Johnson, and T. J. Suleski, "Performance of conformal guided mode resonance filters," Optics Letters, Vol. 36, 1155-1157, 2011.
    doi:10.3390/mi2020150

    17. Lu, M., H. Zhai, and R. Magnusson, "Focusing light with curved guided-mode resonance reflectors," Micromachines, Vol. 2, 150-156, 2011.
    doi:10.1364/JOSA.62.000502

    18. Berreman, D. W., "Optics in stratified and anisotropic media: 4 x 4-matrix formulation," JOSA, Vol. 62, 502-510, 1972.
    doi:10.1364/JOSAA.14.003125

    19. Chen, C.-J., A. Lien, and M. Nathan, "4 x 4 and 2 x 2 matrix formulations for the optics in stratified and biaxial media," JOSA A, Vol. 14, 3125-3134, 1997.
    doi:10.1364/JOSA.71.000811

    20. Moharam, M. and T. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," JOSA, Vol. 71, 811-818, 1981.
    doi:10.2528/PIERB11083107

    21. Rumpf, R. C., "Improved formulation of scattering matrices for semi-analytical methods that is consistent with convention," Progress In Electromagnetics Research B, Vol. 35, 241-261, 2011.
    doi:10.2528/PIERB11092006

    22. Rumpf, R. C., "Simple implementation of arbitrarily shaped total-field/scattered-field regions in finite-difference frequency-domain," Progress In Electromagnetics Research B, Vol. 36, 221-248, 2012.