Vol. 40

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-05-21

Direction Estimation of Correlated/Coherent Signals by Sparsely Representing the Signal-Subspace Eigenvectors

By Zhi-Chao Sha, Zhangmeng Liu, Zhitao Huang, and Yiyu Zhou
Progress In Electromagnetics Research C, Vol. 40, 37-52, 2013
doi:10.2528/PIERC13040908

Abstract

This paper addresses the problem of direction-of-arrival (DOA) estimation of correlated and coherent signals, and two sparsity-inducing methods are proposed. In the first method named L1-EVD, the signal-subspace eigenvectors are represented jointly with well-chosen hard thresholds attached to the representation residue of each eigenvector. Then only the eigenvector corresponding to the largest eigenvalue is reserved for DOA estimation via sparse representation, which aims at highly correlated signals, and a method named L1-TEVD (TEVD: Truncated EVD) is proposed. Simulation results show that, L1-EVD and L1-TEVD both surpass L1-SVD in DOA estimation performance and computation efficiency for highly correlated and coherent signals.

Citation


Zhi-Chao Sha, Zhangmeng Liu, Zhitao Huang, and Yiyu Zhou, "Direction Estimation of Correlated/Coherent Signals by Sparsely Representing the Signal-Subspace Eigenvectors," Progress In Electromagnetics Research C, Vol. 40, 37-52, 2013.
doi:10.2528/PIERC13040908
http://jpier.org/PIERC/pier.php?paper=13040908

References


    1. Liang, J. and D. Liu, "Two L-shaped array-based 2-D DOAs estimation in the presence of mutual coupling," Progress In Electromagnetics Research, Vol. 112, 273-298, 2011.

    2. Yang, P., F. Yang, and Z.-P. Nie, "DOA estimation with sub-array divided technique and interpolated esprit algorithm on a cylindrical conformal array antenna," Progress In Electromagnetics Research, Vol. 103, 201-216, 2010.
    doi:10.2528/PIER10011904

    3. Mukhopadhyay, M., B. K. Sarkar, and A. Chakrabort, "Augmentation of anti-jam GPS system using smart antenna with a simple DOA estimation algorithm," Progress In Electromagnetics Research, Vol. 67, 231-249, 2007.
    doi:10.2528/PIER06090504

    4. Tu, T. C., C. M. Li, and C. C. Chiu, "The performance of polarization diversity schemes in outdoor micro cells," Progress In Electromagnetics Research, Vol. 55, 175-188, 2005.
    doi:10.2528/PIER04122901

    5. Cheng, S. C. and K. C. Lee, "Reducing the array size for DOA estimation by an antenna mode switch technique," Progress In Electromagnetics Research, Vol. 131, 117-134, 2010.

    6. Zaharis, Z. D., K. A. Gotsis, and J. N. Sahalos, "Adaptive beamforming with low side lobe level using neural networks trained by mutated Boolean PSO," Progress In Electromagnetics Research, Vol. 127, 139-154, 2012.
    doi:10.2528/PIER12022806

    7. Liu, F., J. Wang, R. Du, L. Peng, and P. Chen, "A second-order cone programming approach for robust downlink beamforming with power control in cognitive radio networks," Progress In Electromagnetics Research M, Vol. 18, 221-231, 2011.

    8. Mallipeddi, R., J. P. Lie, P. N. Suganthan, S. G. Razul, and C. M. S. See, "A differential evolution approach for robust adaptive beamforming based on joint estimation of look direction and array geometry," Progress In Electromagnetics Research, Vol. 119, 381-394, 2011.
    doi:10.2528/PIER11052205

    8. Krim, H. and M. Viberg, "Two decades of array signal processing research: The parametric approach," IEEE Signal Processing Mag., 67-94, Jul. 1996.

    10. Si, W., L. Wan, L. Liu, and Z. Tian, "Fast estimation of frequency and 2-D DOAs for cylindrical conformal array antenna using state-space and propagator method," Progress In Electromagnetics Research, Vol. 137, 51-71, 2013.

    11. Weiss, A. J. and B. Friedlander, "On the Cramer-Rao bound for direction finding of correlated signals," IEEE Trans. Signal Processing, Vol. 41, No. 1, 495-499, Jan. 1993.
    doi:10.1109/TSP.1993.193187

    12. Linebarger, D. A., R. D. DeGroat, and E. M. Dowling, "Efficient direction-finding methods employing forward/backward averaging," IEEE Trans. Signal Processing, Vol. 42, No. 8, 2136-2145, Aug. 1994.
    doi:10.1109/78.301848

    13. Malioutov, D., "A sparse signal reconstruction perspective for source localization with sensor arrays,", M. S. Thesis, MIT, Cambridge, MA, Jul. 2003.

    14. Fuchs, J. J., "On the application of the global matched filter to DOA estimation with uniform circular arrays," IEEE Trans. Signal Processing, Vol. 49, No. 4, 702-709, Apr. 2001.
    doi:10.1109/78.912914

    15. Malioutov, D., M. Cetin, and A. S. Willsky, "A sparse signal reconstruction perspective for source localization with sensor arrays," IEEE Trans. Signal Processing, Vol. 53, No. 8, 3010-3022, Aug. 2005.
    doi:10.1109/TSP.2005.850882

    16. Liu, F., L. Peng, M. Wei, and S. Guo, "An improved L1-SVD algorithm based on noise subspace for DOA estimation," Progress In Electromagnetics Research C, Vol. 29, 109-122, May 2012.

    17. Hyder, M. M. and K. Mahata, "Direction-of-arrival estimation using a mixed L2,0 norm approximation," IEEE Trans. Signal Processing, Vol. 58, No. 9, 4646-4655, Sep. 2010.
    doi:10.1109/TSP.2010.2050477

    18. Liu, Z. M., Z. T. Huang, and Y. Y. Zhou, "Direction-of-arrival estimation of wideband signals via covariance matrix sparse representation," IEEE Trans. Signal Processing, Vol. 59, No. 9, 4256-4270, Sep. 2011.
    doi:10.1109/TSP.2011.2159214

    19. Zhang, Y., Q. Wan, and A.-M. Huang, "Localization of narrow band sources in the presence of mutual coupling via sparse solution finding," Progress In Electromagnetics Research, Vol. 86, 243-257, 2008.
    doi:10.2528/PIER08090703

    20. Chen, S. S., D. L. Donoho, and M. A. Saunders, "Atomic," Progress In Electromagnetics Research, Vol. 43, No. 1, 129-159, 2001.

    21. Berg, E. and M. P. Friedlander, "In pursuit of a root,", Technique Report, University of British Columbia, BC, Canada, Tech. Rep. TR-2007-19, 1-8, 2007.

    22. Hansen, P. C., "Analysis of discrete ill-posed problems by means of the L-curve," SIAM Review, Vol. 34, No. 4, 561-580, 1992.
    doi:10.1137/1034115

    23. Natarajan, B. K., "Sparse approximate solutions to linear systems," SIAM J. Comput., Vol. 24, 227-234, 1995.
    doi:10.1137/S0097539792240406

    24. Kaveh, M. and A. J. Barabell, "The statistical performance of the MUSIC and the minimum-norm algorithms in resolving plane waves in noise," IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 34, No. 2, 331-341, Apr. 1986.
    doi:10.1109/TASSP.1986.1164815

    25. Brillinger, D. R., Time Series: Data Analysis and Theory, SIAM Press, 2001.
    doi:10.1137/1.9780898719246

    26. Tropp, J. A. and S. J.Wright, "Computational methods for sparse solution of linear inverse problems," Proceedings of the IEEE, Vol. 98, No. 6, 948-958, Jun. 2010.
    doi:10.1109/JPROC.2010.2044010

    27. Zhang, Y., Q. Wan, H. P. Zhao, and W. L. Yang, "Support vector regression for basis selection in Laplacian noise environment," IEEE Signal Processing Letters, Vol. 14, No. 11, 871-874, Nov. 2007.
    doi:10.1109/LSP.2007.901700

    28. Zhang, Y., H. Zhao, and Q. Wan, "Single snapshot 2D-DOA estimation in impulsive noise environment using linear arrays," ACES Journal, Vol. 27, No. 2, 991-998, Dec. 2012.