Vol. 38

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-04-08

Improved Method of Node and Threshold Selection in Wavelet Packet Transform for UWB Impulse Radio Signal Denoising

By Abul Kalam Mohammed Baki and Nemai C. Karmakar
Progress In Electromagnetics Research C, Vol. 38, 241-257, 2013
doi:10.2528/PIERC13011709

Abstract

Ultra wide band (UWB) impulse radio (IR) technology has different applications in different sectors such as short range radios and collision avoidance radar. A strong signal denoising method is needed for UWB-IR signal detection. One of the challenges of UWB-IR signal detection technique is the environmental interferences and noises. Wavelet Packet Transform (WPT) based multi-resolution analysis technique is suitable for this kind of signal denoising and detection. The paper describes a better method of denoising and detection technique of UWB-IR signal based on calculation of energies of the coefficients of each WPT terminal-node and by using an improved threshold calculation technique. The proposed technique is investigated through both simulation and experimentation.

Citation


Abul Kalam Mohammed Baki and Nemai C. Karmakar, "Improved Method of Node and Threshold Selection in Wavelet Packet Transform for UWB Impulse Radio Signal Denoising," Progress In Electromagnetics Research C, Vol. 38, 241-257, 2013.
doi:10.2528/PIERC13011709
http://jpier.org/PIERC/pier.php?paper=13011709

References


    1. Guimaraes, D. A. and G. G. R. Gomes, "Introduction to ultra wideband radio," Revista Telecomunicacoes, Vol. 14, No. 01, 49-61, 2012.

    2. Siwiak, K. and L. L. Huckabee, "Ultra wideband radio," Wiley Encyclopedia of Telecommunications, (J. G. Proakis, ed.), Vol. 5, 2754-2762, John Wiley & Sons, Inc., Hoboken, New Jersey, 2003.

    3. Hussain, M. G. M., "Principles of space-time array processing for ultra wide-band impulse radar and radio communications," IEEE Transactions on Vehicular Technology, Vol. 51, No. 3, 393-403, 2002.
    doi:10.1109/TVT.2002.1002490

    4. Karmakar, N. C. and A. K. M. Baki, "Detection of UHF band impulse radio signal through wavelet packet transform," 7th International Conference on Electrical and Computer Engineering, 867-871, Dhaka, Bangladesh, 2012.

    5. Baki, A. K. M., N. Shinohara, H. Matsumoto, K. Hashimoto, and T. Mitani, "Study of isosceles trapezoidal edge tapered phased array antenna for solar power station/satellite," IEICE Trans. Commun., Vol. E90-B, No. 4, 968-977, 2007.
    doi:10.1093/ietcom/e90-b.4.968

    6. Baki, A. K. M., K. Hashimoto, N. Shinohara, T. Mitani, and H. Matsumoto, "Isosceles-trapezoidal-distribution edge tapered array antenna with unequal element spacing for solar power satellite," IEICE Trans. Commun., Vol. E91-B, No. 2, 527-535, 2008.
    doi:10.1093/ietcom/e91-b.2.527

    7. Baki, A. K. M., N. C. Karmakar, U. Bandara, and E. M. Amin, "Beam forming algorithm with different power distribution for RFID reader," Chipless and Conventional Radio Frequency Identification: Systems for Ubiquitous Tagging, 64-95, IGI Global, USA, May 2012, ISBN 978-1-4666-1616-5 (hardcover).

    8. Baki, A. K. M. and N. C. Karmakar, "Staircase power distribution of array antenna for UHF band RFID reader," 7th International Conference on Electrical and Computer Engineering, 854-857, Dhaka, Bangladesh, 2012.

    9. Karmakar, N. C., P. Zakavi, and M. Kumbukage, "FPGA-controlled phased array antenna development for UHF RFID reader," Handbook of Smart Antennas for RFID Systems, 211-241, John Wiley & Sons, Inc., 2010.

    10. Karmakar, N. C., "Recent paradigm shift in RFID and smart antenna," Handbook of Smart Antennas for RFID Systems, 57-82, John Wiley & Sons, Inc., 2010.

    11. Naderi, M. S., G. B. Gharehpetian, and M. Abedi, "Modeling and detection of transformer internal incipient fault during impulse test," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 15, No. 1, 284-291, 2008.
    doi:10.1109/T-DEI.2008.4446762

    12. Ruch, D. K. and P. J. Van Fleet, Wavelet Theory an Elementary Approach with Applications, John Wiley & Sons, Inc., 2009.
    doi:10.1002/9781118165652

    13. Atto, A. M., D. Pastor, and A. Isar, "On the statistical decorrelation of the wavelet packet coefficients of a band-limited wide-sense stationary random process," Signal Processing, Vol. 87, 2320-2335, 2007, online resource at www.sciencedirect.com.
    doi:10.1016/j.sigpro.2007.03.014

    14. Trenas, M. A., J. Lopez, and E. L. Zapata, "FPGA implementation of wavelet packet transform with reconfigurable tree structure," Proceedings of the 26th Euro Micro Conference, Vol. 1, 244-251, 2000.

    15. Kawada, M., A. Tungkanawanich, and Z.-I. Kawasaki, "Detection of wide-band E-M signals emitted from partial discharge occurring in GIS using wavelet transform," IEEE Trans. on Power Delivery, Vol. 15, No. 2, 467-471, Apr. 2000.
    doi:10.1109/61.852970

    16. Zhou, X., C. Zhou, and I. J. Kemp, "An improved methodology for application of wavelet transform to partial discharge measurement denoising," IEEE Transactions on Dielectrics and Electrical nsulation, Vol. 12, 586-594, 2005.
    doi:10.1109/TDEI.2005.1453464

    17. Liu, Y., X. S. Liang, and R. H.. Weisberg, "Rectification of the bias in the wavelet power spectrum," J. Atmos. Oceanic Technol., Vol. 24, 2093-2102, 2007.
    doi:10.1175/2007JTECHO511.1

    18. Xu, Y.-J. and S.-D. Xiu, "A new and effective method of bearing fault diagnosis using wavelet packet transform combined with support vector machine," Journal of Computers, Vol. 6, No. 11, 2502-2509, 2011.

    19. Zhang, H., T. R. Blackburn, B. T. Phung, and D. Sen, "A novel wavelet transform technique for on-line partial discharge measurements. Part 1: WT denoising algorithm," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 14, No. 1, 3-14, 2007.
    doi:10.1109/TDEI.2007.302864