Vol. 37

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-02-05

A High-Directivity Microstrip Patch Antenna Design by Using Genetic Algorithm Optimization

By Jeevani Windhya Jayasinghe, Jaume Anguera, and Disala N. Uduwawala
Progress In Electromagnetics Research C, Vol. 37, 131-144, 2013
doi:10.2528/PIERC13010805

Abstract

A high-directivity patch antenna with broadside directivity is attractive, since a narrow beam can be obtained without the need of using an array of antennas. Therefore, the solution becomes simpler as there is no need for a complicated feeding network. In this sense, this paper presents a novel patch antenna design with high directivity in the broadside direction by using genetic algorithms (GA). The proposed GA method divides the overall patch area into different cells taking into account that cells have a small overlap area between them. This avoids optimized geometries where cells have only an infinitesimal connection. Therefore, the proposed method is robust for manufacturing. The antenna operates in a higher-order mode at 4.12 GHz and the geometry fits inside a patch of 40 mm × 40 mm on a substrate with a relative permittivity of 3.38 and a thickness of 1.52 mm resulting in a directivity of 10.5 dBi. The specialty of this design is the use of GA to select the optimized shape and the feeding position instead of a known shape and a fixed feeding position. The antenna has been fabricated and the simulation results are in good agreement with the measurements. This results in a simpler design of a single high-directivity patch, which can substitute an array of two elements operating in the fundamental mode.

Citation


Jeevani Windhya Jayasinghe, Jaume Anguera, and Disala N. Uduwawala, "A High-Directivity Microstrip Patch Antenna Design by Using Genetic Algorithm Optimization," Progress In Electromagnetics Research C, Vol. 37, 131-144, 2013.
doi:10.2528/PIERC13010805
http://jpier.org/PIERC/pier.php?paper=13010805

References


    1. Balanis, C. A., Antenna Theory and Design, 2nd Ed., John Willey & Sons, Inc., 1997.

    2. Anguera, J., C. Puente, C. Borja, R. Montero, and J. Soler, "Small and high directivity bowtie patch antenna based on the sierpinski fractal," Microwave and Optical Technology Letters, Vol. 31, No. 3, 239-241, November 2001.
    doi:10.1002/mop.1407

    3. Romeu, J., C. Borja, and S. Blanch, "High directivity modes in the koch island fractal patch antenna," IEEE Antennas and Propagation Symposium, 1696-1699, 2000.

    4. Anguera, J., J. P. Daniel, C. Borja, J. Mumbru, C. Puente, T. Leduc, N. Laeveren, and P. V. Roy, "Metallized foams for fractal-shaped microstrip patch antennas," IEEE Antennas and Propagation Magazine, Vol. 50, No. 6, 20-38, 2008.
    doi:10.1109/MAP.2008.4772718

    5. Borja, C., G. Font, S. Blanch, and J. Romeu, "High directivity fractal boundary microstrip patch antenna," IEE Electronic Letters, Vol. 36, No. 9, 778-779, 2000.
    doi:10.1049/el:20000625

    6. Anguera, J. , L. Boada, C. Puente, C. Borja, and J. Soler, "Stacked H-shaped microstrip patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 4, 983-993, 2004.
    doi:10.1109/TAP.2004.825812

    7. Moldovan, E., B. Lindmark, and P. Slattman, "Optimization of a stacked patch antenna for high directivity," 13emes Journees nternationales de Nice sur les Antennes (JINA, 317-372, 2004, www.ee.kth.se/php/modules/publications/reports/2004/IR-S3-SB-0460.pdf.

    8. Foroozesh, A. and L. Shafai, "Investigation into the effects of the patch-type FSS superstrate on the high-gain cavity resonance antenna design," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 2, 258-270, 2010.
    doi:10.1109/TAP.2009.2037702

    9. Foroozesh, A. and L. Shafai, "On the characteristics of the highly directive resonant cavity antenna having metal strip grating superstrate," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, 78-91, 2012.
    doi:10.1109/TAP.2011.2167933

    10. Pirhadi, A., F. Keshmiri, M. Hakkak, and M. Tayarani, "Analysis and design of dual band high directivity EBG resonator antenna using square loop FSS as superstrate layer," Progress In Electromagnetics Research, Vol. 70, 1-20, 2007.
    doi:10.2528/PIER07010201

    11. Zhou, H., Z. Pei, S. Qu, S. Zhang, J. Wang, Z. Duan, H. Ma, and Z. Xu, "A novel high-directivity microstrip patch antenna based on zero-index metamaterial," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 538-541, 2009.
    doi:10.1109/LAWP.2009.2018710

    12. Cheype, C., C. Serier, M. Thevenot, T. Monediµere, A. Reineix, and B. Jecko, "An electromagnetic bandgap resonator antenna," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 9, 1285-1290, 2002.
    doi:10.1109/TAP.2002.800699

    13. El-Khouly, E., H. Ghali, and S. A. Khamis, "High directivity antenna using a modified Peano space-filling curve," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 405-407, 2007.
    doi:10.1109/LAWP.2007.903492

    14. Yang, H. D. , N. G. Alexopoulos, and E. Yablonovitch, "Photonic band-gap materials for high-gain printed circuit antennas," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 1, 185-187, 1997.
    doi:10.1109/8.554261

    15. Haupt, R. L., "An introduction to genetic algorithms for electromagnetics," IEEE Antennas and Propagation Magazine, Vol. 37, No. 2, 7-15, 1995.
    doi:10.1109/74.382334

    16. Johnson, J. M. and Y. Rahmat-Samii, "Genetic algorithms in engineering electromagnetics," IEEE Antennas and Propagation Magazine, Vol. 39, No. 4, 7-21, 1997.
    doi:10.1109/74.632992

    17. Thors, B., H. Steyskal, and H. Holter, "Broadband fragmented aperture phased array element design using genetic algorithms," IEEE Transactions on Antennas and Propagation, Vol. 53, 3280-3287, 2005.
    doi:10.1109/TAP.2005.856340

    18. Jayasinghe, J. M. J. W. and D. N. Uduwawala, "A broadband triple-frequency patch antenna for WLAN applications using genetic algorithm optimization," 7th IEEE International Conference on Industrial and Information Systems, 1-4, 2012.

    19. Ozgun, O., et al., "Design of dual-frequency probe-fed microstrip antennas with genetic optimization algorithm," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 8, 1947-1954, 2003.
    doi:10.1109/TAP.2003.814732

    20. Choo, H., A. Hutani, L. C. Trintinalia, and H. Ling, "Shape optimisation of broadband microstrip antennas using genetic algorithm," Electronics Letters, Vol. 36, No. 25, 2057-2058, 2000.
    doi:10.1049/el:20001452

    21. Sun, S., L. V. Yinghua, and J. Zhang, "The application of genetic algorithm optimization in broadband microstrip antenna design," Antennas and Propagation Society International Symposium (APSURSI), 1-4, 2010.

    22. Spence, T. G., D. H. Werner, and R. D. Groff, "Genetic algorithm optimization of some novel broadband and multiband microstrip antennas," Antennas and Propagation Society International Symposium, Vol. 4, 4408-4411, 2004.

    23. Griffiths, L. A. , C. Furse, and Y. C. Chung, "Broadband and multiband antenna design using the genetic algorithm to create amorphous shapes using ellipses," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 10, 2776-2782, October 2006.
    doi:10.1109/TAP.2006.882154

    24. Villegas, F. J., T. Cwik, Y. Rahmat-Samii, and M. Manteghi, "A parallel electromagnetic genetic-algorithm optimization application for patch antenna design," IEEE Transactions on Antennas and Propagation, Vol. 52, 2424-2435, 2004.
    doi:10.1109/TAP.2004.834071

    25. Jayasinghe, J. W., J. Anguera, and D. N. Uduwawala, "A simple design of multi band microstrip patch antennas robust to fabrication tolerances for GSM, UMTS, LTE, and Bluetooth applications by using genetic algorithm optimization," Progress In Electromagnetics Research M, Vol. 27, 255-269, 2012.

    26. Jayasinghe, J. M. J. W., D. N. Uduwawala, and J. Anguera, "Design of dual band patch antennas for cellular communications by genetic algorithm optimization," International Journal of Engineering and Technology, Vol. 1, No. 1, 26-43, 2012.

    27. Johnson , J. M. and Y. Rahmat-Samii, "Genetic algorithms and method of moments (GA/MoM): A novel integration for antenna design," Antennas and Propagation Society International Symposium , Vol. 3, 1664-1667, 1997.

    28. Sathi, V., S. Taherizadeh, A. Lotfi, and C. Ghobadi, "Optimisation of multi-frequency microstrip antenna using genetic algorithm coupled with method of moments," Microwaves, Antennas & Propagation, IET, Vol. 4, No. 4, 477-483, 2010.
    doi:10.1049/iet-map.2009.0020

    29. Villegas, F. J., T. Cwik, Y. Rahmat-Samii, and M. Manteghi, "Parallel genetic-algorithm optimization of a dual-band patch antenna for wireless communications," Antennas and Propagation Society International Symposium, Vol. 1, 334-337, 2002.

    30. Herscovici, N., M. F. Osorio, and C. Peixeiro, "Miniaturization of rectangular microstrip patches using genetic algorithms," IEEE Antennas and Wireless Propagation Letters, Vol. 1, 94-97, 2002.
    doi:10.1109/LAWP.2002.805128

    31. Soontornpipit, P., C. M. Furse, and Y. C. Chung, "Miniaturized biocompatible microstrip antenna using genetic algorithms," EEE Transactions on Antennas and Propagation, Vol. 53, No. 6, 1939-1945, 2005.
    doi:10.1109/TAP.2005.848461