Vol. 37
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2013-01-24
A Novel Dual-Band Multi-Way Power Divider Using Coupled Lines
By
Progress In Electromagnetics Research C, Vol. 37, 41-51, 2013
Abstract
In this paper, coupled lines are used in the design of a dual band planar multi-way Bagley polygon power divider to reduce the size is proposed. For the input port matching and transmission characters are affected by the even mode impedance only, analysis of the multi-way Bagley polygon power divider and equivalent circuit based on coupled lines, closed form design equations are presented with even mode impedance, and odd mode impedance is obtained arbitrarily. To validate the design procedure, two dual band three-way Bagley polygon power dividers are designed, simulated, and fabricated using coupled lines with areas of 3.17 cm2 and 2.53 cm2, and the corresponding conventional divider with areas of 17.86 cm2 and 11.74 cm2, respectively. When coupled lines are used, the layout is more compact with a reduction in size of more than nearly 80% compared to the conventional design.
Citation
Lulu Bei, Shen Zhang, and Kai Huang, "A Novel Dual-Band Multi-Way Power Divider Using Coupled Lines," Progress In Electromagnetics Research C, Vol. 37, 41-51, 2013.
doi:10.2528/PIERC12120321
References

1. Wilkinson, E., "An N-way hybrid power divider," IRE Trans. Microw. Theory Tech., Vol. 8, No. 1, 116-118, 1960.
doi:10.1109/TMTT.1960.1124668

2. Liao, C., L. Chen, W. Lin, X. Zheng, and Y. Wu, "Design of an ultra-wideband power divider via the coarse-grained parallel micro-genetic algorithm," Progress In Electromagnetics Research, Vol. 124, 425-440, 2012.

3. Wang, D., H. Zhang, T. Xu, H.Wang, and G. Zhang, "Design and optimization of equal split broadband microstrip Wilkinson power divider using enhanced particle swarm optimization algorithm," Progress In Electromagnetics Research, Vol. 118, 312-334, 2011.

4. Li, Q., X. Shi, F. Wei, and J.-G. Gong, "A novel planar 180o out-of-phase power divider for UWB application," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 1, 161-167, 2011.
doi:10.1163/156939311793898288

5. Yang, N., B. Li, and X. Wu, "Closed-form design of Wilkinson power divider with broadband harmonic suppression and size reduction," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 2-3, 307-318, 2012.
doi:10.1163/156939312800030776

6. Zhang, H., X.-W. Shi, F. Wei, and L. Xu, "Compact wideband Gysel power divider with arbitrary power division based on patch type structure," Progress In Electromagnetics Research, Vol. 119, 395-406, 2011.
doi:10.2528/PIER11071501

7. Lin, F., X. Chu, and S.W. Wong, "A novel Gysel power divider design with uniform impedance transmission lines for arbitrary power-dividing ratios," Journal of Electromagnetic Waves and Applications, Vol. 26, 1-8, Nov. 2012.

8. Jin, J., X. Lin, X. Gao, X. Zhuang, and Y. Fan, "A dual-band power divider using parallel strip line with high isolation," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 11-12, 1594-1601, 2012.
doi:10.1080/09205071.2012.705765

9. Li, J., J. Nan, X. Shan, and Q. Yan, "A novel modified dual-frequency Wilkinson power divider with open stubs and optional isolation," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2223-2235, 2010.
doi:10.1163/156939310793699163

10. Wang, X.-Y., J.-L. Li, and W. Shao, "Flexible design of a compact coupled-line power divider," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 16, 2168-2177, 2011.
doi:10.1163/156939311798147033

11. Li, B., X. Wu, N. Yang, and W. Wu, "Dual-band equal/unequal Wilkinson power dividers based on coupled-line section with short-circuited stub," Progress In Electromagnetics Research, Vol. 111, 163-178, 2011.
doi:10.2528/PIER10110108

12. Sedighy, S. H. and M. Khalaj-Amirhosseini, "Compact Wilkinson power divider using stepped impedance transmission lines," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 13, 1773-1782, 2011.
doi:10.1163/156939311797453980

13. Deng, P., J. Guo, and W. Kuo, "New Wilkinson power dividers based on compact stepped-impedance transmission lines and shunt open stubs," Progress In Electromagnetics Research, Vol. 123, 407-426, 2012.
doi:10.2528/PIER11111612

14. Dai, G. L. and M. Y. Xia, "A Dual-band unequal Wilkinson power divider using asymmetric coupled-line," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 11-12, 1587-1595, 2011.
doi:10.1163/156939311797164981

15. Al-Zayed, A. S. and S. F. Mahmoud, "Seven ports power divider with various power division ratios," Progress In Electromagnetics Research, Vol. 114, 383-393, 2011.

16. Wuren, T., K. Taniya, I. Sakagami, and M. Tahara, "Miniaturization of 3- and 5-way Bagley polygon power dividers," Asia-Pacific Microwave Conference (APMC) Proceedings, Vol. 4, Dec. 2005.

17. Oraizi, H. and S. A. Ayati, "Optimum design of a modified 3-way bagley rectangular power divider," Mediterranean Microwave Symposium (MMS), 25-28, 2010.

18. Sakagami, I., T. Wuren, M. Fujii, and M. Tahara, "Compact multi-way power dividers similar to the Bagley polygon," IEEE MTT-S Int. Microwave Symposium (IMS), 419-422, 2007.

19. Sakagami, I., T. Wuren, M. Fujii, and Y. Tomoda, "A new type of multi-way microwave power divider based on Bagley polygon power divider," Asia-Pacific Microwave Conference (APMC) Proceedings, 1353-1356, 2006.

20. Elles, D. and Y.-K. Yoon, "Compact dual band three way bagley polygon power divider using composite right/left handed (CRLH) transmission lines," IEEE MTT-S Int. Microwave Symposium (IMS), 485-488, 2009.

21. Gomez-Garcia, R. and M. Sanchez-Renedo, "Application of generalized Bagley-polygon four-port power dividers to designing microwave dual-band bandpass planar filters," IEEE MTT-S Int. Microwave Symposium (IMS), 580-583, 2010.

22. Sakagami, I. and T. Wuren, "Compact multi-way power dividers for dual-band, wide-band and easy fabrication," IEEE MTT-S Int. Microwave Symposium (IMS), 489-492, 2009.

23. Shamaileh, K., A. Qaroot, and N. Dib, "Non-uniform transmission line transformers and their application in the design of compact multi-band Bagley power dividers with harmonics suppression," Progress In Electromagnetics Research, Vol. 113, 269-284, 2011.

24. Qaroot, A., K. Shamaileh, and N. Dib, "Design and analysis of dual-frequency modified 3-way Bagley power dividers," Progress In Electromagnetics Research C, Vol. 20, 67-81, 2011.

25. Al Shamaileh, K. A., A. Qaroot, and N. Dib, "Design of N-way power divider similar to the Bagley polygon divider with an even number of output ports," Progress In Electromagnetics Research C, Vol. 20, 83-93, 2011.

26. Tang, X. and K. Mouthaan, "Analysis and design of compact two-way Wilkinson power dividers using coupled lines," Asia-Pacific Microw Conf., 1319-1322, Dec. 7-10, 2009.

27. Monzon, C., "A small dual-frequency transformer in two sections," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 4, 1157-1161, Apr. 2003.
doi:10.1109/TMTT.2003.809675