Vol. 36

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-01-18

A Modified Microstrip Wilkinson Power Divider with High Order Harmonics Suppression

By Yatao Peng, Lijun Zhang, Yongqing Leng, and Jin Guan
Progress In Electromagnetics Research C, Vol. 36, 159-168, 2013
doi:10.2528/PIERC12111605

Abstract

In this paper, a modified Wilkinson power divider structure with three order harmonics suppression is presented. The quarter-wavelength microstrip lines in the traditional Wilkinson power divider (WPD) are replaced by two transmission line segments with ends connected (TTLWEC). The TTLWEC performs the functions of impedance transformation and three order harmonics suppression. The design equations are deduced by odd- and even-mode theory. An example of power divider operating at 1 GHz is designed and fabricated based on the printed circuit board technology. The measured results of 3.13 dB insert loss (IL) and 35 dB return loss (RL) are obtained at the operating frequency, and the first, second and third harmonic harmonics suppressions are -38 dB, -44 dB and -39 dB, respectively, which agree well with the simulated results and validate the availability of the proposed structure.

Citation


Yatao Peng, Lijun Zhang, Yongqing Leng, and Jin Guan, "A Modified Microstrip Wilkinson Power Divider with High Order Harmonics Suppression," Progress In Electromagnetics Research C, Vol. 36, 159-168, 2013.
doi:10.2528/PIERC12111605
http://jpier.org/PIERC/pier.php?paper=12111605

References


    1. Sun, G. and R. H. Jansen, "Broadband Doherty power amplifier via real frequency technique," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 20, 99-111, 2012.
    doi:10.1109/TMTT.2011.2175237

    2. Bathich, K. , A. Z. Markos, and G. Boeck, "Frequency response analysis and bandwidth extension of the Doherty," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 4, 934-944, 2011.
    doi:10.1109/TMTT.2010.2098040

    3. Shamsinejad, S., M. Soleimani, and N. Komjani, "Novel miniaturized Wilkinson power divider for 3G mobile receivers," Progress In Electromagnetics Research Letters, Vol. 3, 9-16, 2008.
    doi:10.2528/PIERL08012603

    4. Olvera Cervantes, J. L., A. Corona-Chavez, R. Chavez-Perez, H. Lobato-Morales, J.-R. Ortega-Solis, and J.-L. Medina-Monroy, "A wideband quadrature power divider/combiner and its application to an improved balanced amplifier," Progress In Electromagnetics Research C, Vol. 34, 29-39, 2013.

    5. Wu, Y., Y. Liu, and S. Li, "An unequal dual-frequency Wilkinson power divider with optional isolation structure," Progress In Electromagnetics Research, Vol. 91, 393-411, 2009.
    doi:10.2528/PIER09030501

    6. Wu, Y., Y. Liu, and S. Li, "Dual-band modified Wilkinson power divider without transmission line stubs and reactive components," Progress In Electromagnetics Research, Vol. 96, 9-20, 2009.
    doi:10.2528/PIER09072109

    7. Wu, Y. and Y. Liu, "An unequal coupled-line Wilkinson power divider for arbitrary terminated impedances," Progress In Electromagnetics Research, Vol. 117, 181-194, 2011.

    8. Wu, Y., Y. Liu, and S. Li, "A new dual-frequency Wilkinson power divider," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 4, 483-492, 2009.
    doi:10.1163/156939309787612400

    9. Li, J., Y. Wu, Y. Liu, J. Shen, S. Li, and C. Yu, "A generalized coupled-line dual-band wilkinson power divider with extended ports," Progress In Electromagnetics Research, Vol. 129, 197-214, 2012.

    10. Li, B., X. Wu, N. Yang, and W. Wu, "Dual-band equal/unequal Wilkinson power dividers based on coupled-line section with short-circuited stub," Progress In Electromagnetics Research, Vol. 111, 163-178, 2011.
    doi:10.2528/PIER10110108

    11. Srisathit, S., M. Chongcheawchamnan, and A. Worapishet, "Design and realization of dual-band 3 dB power divider based on two-section transmission-line topology," Electronics Letters, Vol. 39, No. 9, 723-724, May 2003.
    doi:10.1049/el:20030483

    12. Woo, D. J. and T. K. Lee, "Suppression of harmonics in Wilkinson power divider using dual-band rejection by asymmetric DGS," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 6, 2139-2144, 2006.

    13. Lin, C. M., H. H. Su, J. C. Chiu, and Y. H. Wang, "Wilkinson power divider using microstrip EBG cells for the suppression of harmonics," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 10, 700-702, 2007.
    doi:10.1109/LMWC.2007.905595

    14. Zhang, J., L. Li, J. Gu, and X. Sun, "Compact and harmonic suppression Wilkinson power divider with short circuit anti-coupled line," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 9, 661-663, 2007.
    doi:10.1109/LMWC.2007.903453

    15. Wang, J., J. Ni, Y. X. Guo, and D. Fang, "Miniaturized microstrip Wilkinson power divider with harmonic suppression," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 7, 440-442, 2009.
    doi:10.1109/LMWC.2009.2022124

    16. Liu, H., et al., "Harmonics suppression of wilkinson power divider using spurlines with adjustable rejection bands," German Microw. Conf., 1-4, 2008.

    17. Yi, K. H. and B. K. Kang, "Modified Wilkinson power divider for nth harmonic suppression," IEEE Microwave and Wireless Components Letters, Vol. 13, 178-180, 2003.

    18. Kim, J. S., M. J. Park, and K. B. Kong, "Modified design of Wilkinson power divider for harmonic suppression," Electronics Letters, Vol. 45, 1174-1175, 2009.
    doi:10.1049/el.2009.2126

    19. Mandal, M. K. and P. Mondal, "Design of sharp-rejection, compact, wideband bandstop filters," IET Microw. Antennas Propag., Vol. 2, No. 4, 389-393, 2008.
    doi:10.1049/iet-map:20070212

    20. Pozar, D. M., Microwave Engineering, Wiley, New York, 1998.