Vol. 34

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-11-01

A Metamaterial Based Microwave Absorber Composed of Coplanar Electric-Field-Coupled Resonator and Wire Array

By Hong-Min Lee and Hyungsup Lee
Progress In Electromagnetics Research C, Vol. 34, 111-121, 2013
doi:10.2528/PIERC12091804

Abstract

In this paper, we present a new type of a double-negative metamaterial absorber (MMA) with a periodic array composed of in-plane an electric-field-coupled-LC (ELC) resonator and a wire. In contrast to common MMA configurations, a metallic pattern layer of the proposed absorber is placed parallel to the incident wave propagation direction. An appropriately designed combination structure is etched on one side of an FR-4 substrate. Here, we fabricated a prototype absorber with a planar array of 66 × 30 unit cells. Our experiments showed that the proposed absorber exhibited a peak absorption rate greater than 86% at 10.1 GHz, irrespective of the incident angles up to 60°.

Citation


Hong-Min Lee and Hyungsup Lee, "A Metamaterial Based Microwave Absorber Composed of Coplanar Electric-Field-Coupled Resonator and Wire Array," Progress In Electromagnetics Research C, Vol. 34, 111-121, 2013.
doi:10.2528/PIERC12091804
http://jpier.org/PIERC/pier.php?paper=12091804

References


    1. Fnate, R. L. and M. T. McCormack, "Reflection properties of the Salisbury screen," IEEE Trans. on Antennas and Propag., Vol. 36, 1443-1445, 1988.
    doi:10.1109/8.8632

    2. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., 274021-274024, 2008.

    3. Tao, H., N. I. Landy, C. M. Bingham, X. Zang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Opt. Express, Vol. 16, 7181-7188, 2008.
    doi:10.1364/OE.16.007181

    4. Alici, K. B., A. B. Turhan, C. M. Soukoulis, and E. Ozbay, "Optically thin composite resonant absorber at the near-infrared band: A polarization independent and spectrally broadband configuration," Opt. Express, Vol. 19, No. 15, 14260-14267, 2011.
    doi:10.1364/OE.19.014260

    5. Jang, Z. H., S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, "Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating ," ACS Nano, Vol. 5, No. 6, 4641-4647, 2011.
    doi:10.1021/nn2004603

    6. Liu, N., M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, "Infrared perfect absorber and its application as plasmonic sensor," Nano Lett., Vol. 10, No. 7, 2342-2348, 2010.
    doi:10.1021/nl9041033

    7. Chiam, S. Y., R. Singh, W. Zhang, and A. A. Bettiol, "Controlling metamaterial resonances via dielectric and aspect ratio effects," Appl. Phys. Lett., Vol. 97, 1919061-1919063, 2010.

    8. Singh, R., I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, "Observing metamaterial induced transparency in individual Fano resonators with broken symmetry," Appl. Phys. Lett., Vol. 99, 2011071-2011073, 2011.
    doi:10.1063/1.3656711

    9. Cao, W., R. Singh, I. A. I. Al-Naib, M. He, A. J. Taylor, and W. Zhang, "Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials," Opt. Lett., Vol. 37, 3366-3368, 2012.
    doi:10.1364/OL.37.003366

    10. Tao, H., C. M. Bingham, D. Pilon, K. Fan, A. C. Strkwerda, D. Shrekenhammer, W. J. Padilla, X. Zhang, and R. D. Averitt, "A dual band terahertz metamaterial absorber," J. Appl. Phys. D, Vol. 43, 225102-225106, 2010.
    doi:10.1088/0022-3727/43/22/225102

    11. Li, M.-H., H.-L. Yang, and X.-W. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
    doi:10.2528/PIER10071409

    12. Lee, J. and S. Lim, "Bandwidth-enhanced and polarization-nsensitive metamaterial absorber using double resonance," Electron. Lett., Vol. 47, 8-9, 2011.
    doi:10.1049/el.2010.2770

    13. Cheng, Y., H. Yang, Z. Cheng, and N. Wu, "Perfect metamaterial absorber based on a split-ring-cross resonator," J. Appl. Phys. A, Vol. 102, 99-103, 2010.

    14. He, X.-J., Y. Wang, J. Wang, T. Gui, and Q. Wu, "Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle," Progress In Electromagnetics Research, Vol. 115, 381-397, 2011.

    15. Bilotti, F., A. Toscano, K. B. Alici, E. Ozbay, and L. Vegini, "Design of miniaturized narrowband absorbers based on resonant-magnetic inclusions," IEEE Trans. on Electromagnetic Compatibility, Vol. 53, 63-72, 2011.
    doi:10.1109/TEMC.2010.2051229

    16. Cheng, Y. and H. Yang, "Design, simulation, and measurement of metamaterial absorber," Microwave Opt. Tech. Lett., Vol. 52, 877-880, 2010.
    doi:10.1002/mop.25068

    17. Tao, H., C. M Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, "A dual band terahertz metamaterial absorber," J. of Phys. D: Appl. Phys., Vol. 43, 225102-225106, 2010.
    doi:10.1088/0022-3727/43/22/225102

    18. Shen, X., T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, "Polarization-independent wide-angle triple-band metamaterial absorber," Opt. Express, Vol. 19, 9401-9407, 2011.
    doi:10.1364/OE.19.009401

    19. Li, H., L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, "Ultrathin multiband gigahertz metamaterial absorbers," J. Appl. Phys., Vol. 110, 0149091-0149098, 2011.

    20. Zhu, B., Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle ," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.
    doi:10.2528/PIER10011110

    21. Padilla, W. J., M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, "Electrically resonant terahertz metamaterials: Theoretical and experimental investigations," Phys. Rev. B, Vol. 75, 0411021-0411024, 2007.

    22. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain technique," IEEE Trans. on Instrumentation and Measurement, Vol. 19, 377-382, 1970.
    doi:10.1109/TIM.1970.4313932

    23. Depine, R. A. and A. Lakhtakia, "A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity," Microwave Opt. Tech. Lett., Vol. 41, 315-316, 2004.
    doi:10.1002/mop.20127