Vol. 32

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-08-10

A Compact Dual-Band Planar Branch-Line Coupler

By Decheng Ji, Bian Wu, Xiao Yan Ma, and Jian Zhong Chen
Progress In Electromagnetics Research C, Vol. 32, 43-52, 2012
doi:10.2528/PIERC12070901

Abstract

A novel branch-line coupler which can operate at two frequencies is presented in this paper. The proposed planar topology, which is different from the conventional one, is analyzed and designed. The new coupler maintains not only compact but also dual-band characteristics. The length of the proposed stepped-impedance lines can be adjusted flexible according to the required operation frequency. In order to verify the method, a dual-band micro-strip coupler operating at 0.9 and 2.1 GHz is fabricated and measured. The simulated and measured results show good agreements.

Citation


Decheng Ji, Bian Wu, Xiao Yan Ma, and Jian Zhong Chen, "A Compact Dual-Band Planar Branch-Line Coupler," Progress In Electromagnetics Research C, Vol. 32, 43-52, 2012.
doi:10.2528/PIERC12070901
http://jpier.org/PIERC/pier.php?paper=12070901

References


    1. Zhang, H. L. and H. Xin, "Dual-band branch-line balun for millimeter wave applications," IEEE Trans. Microw. Theory Tech., 717-720, Jun. 2009.

    2. Pozar, D. M., Microwave Engineering, Wiley, New York, 1998.

    3. Lin, I.-H., M. DeVincentis, C. Caloz, and T. Itoh, "Arbitrary dual-band components using composite right/left-handed transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 4, 1142-1149, Apr. 2004.
    doi:10.1109/TMTT.2004.825747

    4. Park, M.-J. and B. Lee, "Dual-band, cross coupled branch line coupler," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 10, 655-657, Oct. 2005.
    doi:10.1109/LMWC.2005.856683

    5. Hsu, C.-L. and J.-T. Kuo, "Design of dual-band branch line couplers with circuit miniaturization," Asia Pacific Microwave Conference, 16-20, Dec. 2008.

    6. Zheng, S. Y. and S. H. Yeung, "Dual-band rectangular patch hybrid coupler," EEE Trans. Microw. Theory Tech., Vol. 56, No. 7, 1721-1728, Jul. 2004.
    doi:10.1109/TMTT.2008.925234

    7. Chin, K.-S. and K.-M. Lin, "Compact dual-band branch-line and rat-race couplers with stepped-impedance-stub lines," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 5, 1213-1221, May 2010.
    doi:10.1109/TMTT.2010.2046064

    8. Zheng, N., L. Zhou, and W.-Y. Yin, "A novel dual-band π-shaped branch-line coupler with stepped-impedance stubs," Progress In Electromagnetics Research Letters, Vol. 25, 11-20, 2011.

    9. Kim, H. and B. Lee, "Dual-band branch-line coupler with port extensions," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 3, 651-655, Mar. 2010.
    doi:10.1109/TMTT.2010.2040342

    10. Yeung, L. K., "A compact dual-band 90 coupler with coupled-line sections," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 9, 2227-2232, Sept. 2011.
    doi:10.1109/TMTT.2011.2160199

    11. Atlasbaf, Z. and K. Forooraghi, "A new dual band branch-line coupler using coupled lines," Antennas, Propagation & EM Theory, 1-4, Oct. 2006.

    12. Wong, F. L. and K. K. M. Cheng, "A novel planar branch line coupler design for dual-band applications," IEEE Trans. Microw. Theory Tech., Vol. 2, 903-906, Jun. 2004.

    13. Monti, G. and L. Tarricone, "Dual-band artificial transmission lines branch-line coupler," International Journal of RF and Microwave Computer-Aided Engineering, 2007.

    14. Keshavarz, R., M. Danaeian, M. Movahhedi, and A. Hakimi, "A compact dual-band branch-line coupler based on the interdigital transmission line," 2011 19th Iranian Conference on Electrical Engineering (ICEE), 1-5, May 2011.

    15. Jizat, N. M., S. K. A. Rahim, T. A. Rahman, and M. R. Kamarudin, "Miniaturize size of dual band branch-line coupler by implementing reduced series arm of coupler with stub loaded," Microwave and Optical Technology Letters, Vol. 53, No. 4, Apr. 2011.
    doi:10.1002/mop.25869

    16. Cheng, K. K. M. and F. L. Wong, "A novel approach to the design and implementation of dual-band compact planar 90 branch line coupler," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 11, 2458-2462, Nov. 2004.
    doi:10.1109/TMTT.2004.837151

    17. Hong, J.-S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, 2001.
    doi:10.1002/0471221619