Vol. 34

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-10-24

A Wideband Quadrature Power Divider/Combiner and its Application to an Improved Balanced Amplifier

By Jose Luis Olvera Cervantes, Alonso Corona-Chavez, Ricardo Arturo Chavez-Perez, Humberto Lobato-Morales, Jorge Rodrigo Ortega Solis, and Jose-Luis Medina-Monroy
Progress In Electromagnetics Research C, Vol. 34, 29-39, 2013
doi:10.2528/PIERC12061310

Abstract

In this paper a novel broadband quadrature power divider and its robust design method are presented. The QPD consists of a two-section power divider in combination with a 90-degree differential phase shifter. The two-section power divider is calculated to provide equal power split, high output port isolation, and good return loss at all three ports. The differential phase shifter consists of a composed right/left handed transmission line and pure-right handed transmission line named CRLHu-TL and PRHd-TL, respectively. The CRLHu-TL is divided into two parts; one of them consists of a pure-left handed section whose parasitic pad effects are represented by means of a pure right handed section named PRHp. On the other hand, the PRHd-TL is composed by a microstrip transmission line of characteristic impedance 50Ω and electrical length 50° and two sections equivalents to PRHp. The proposed circuit is applied to develop a broadband balanced amplifier with measured fractional bandwidth (FBW) of 124.4% at the center frequency of 2 GHz.

Citation


Jose Luis Olvera Cervantes, Alonso Corona-Chavez, Ricardo Arturo Chavez-Perez, Humberto Lobato-Morales, Jorge Rodrigo Ortega Solis, and Jose-Luis Medina-Monroy, "A Wideband Quadrature Power Divider/Combiner and its Application to an Improved Balanced Amplifier," Progress In Electromagnetics Research C, Vol. 34, 29-39, 2013.
doi:10.2528/PIERC12061310
http://jpier.org/PIERC/pier.php?paper=12061310

References


    1. Lin, I.-H., M. De Vincentis, C. Caloz, and T. Itoh, "Arbitrary dual-band components using composite right/left-handed transmission lines," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 4, 1142-1149, 2004.
    doi:10.1109/TMTT.2004.825747

    2. Cohn, M., J. E. Degenford, and B. A. Newman, "Harmonic mixing with an antiparallel diode pair," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 3, 667-673, 2004.

    3. Okabe, H., C. Caloz, and T. Itoh, "A compact enhanced-bandwidth hybrid ring using an artificial lumped-element left-handed transmission-line section," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 3, 798-804, 2004.
    doi:10.1109/TMTT.2004.823541

    4. Horii, Y., C. Caloz, and T. Itoh, "Super-compact multi-layered left-handed transmission line and diplexer application," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 4, 1527-1534, 2005.
    doi:10.1109/TMTT.2005.845189

    5. Caloz, C., A. Sanada, and T. Itoh, "A novel composite right/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 3, 980-992, 2004.
    doi:10.1109/TMTT.2004.823579

    6. Caloz, C. and T. Itoh, "A novel mixed conventional microstrip and composite right/left-handed backward-wave directional coupler with broadband and tight coupling characteristics," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 1, 31-33, 2004.
    doi:10.1109/LMWC.2003.821506

    7. Sanada, A., C. Caloz, and T. Itoh, "Zeroth-order resonance in composite right/lefthanded transmission line resonators," Asia-Pacific Microwave Conference, 1588-1592, Seoul, Korea, Nov. 2003.

    8. Antoniades, M.-A. and G. V. Eleftheriades, "A broadband Wilkinson balun using microstrip metamaterial lines," IEEE Antennas and Wireless Propagation Lett., Vol. 4, 209-212, 2005.
    doi:10.1109/LAWP.2005.851005

    9. Lee, C.-J., K. M. K. H. Leong, and T. Itoh, "Broadband quadrature hybrid design using metamaterial transmission line and its application in the broadband continuous phase shifter," IEEE/MTT-S International Microwave Symposium, 1745-1748, Jun. 2007.
    doi:10.1109/MWSYM.2007.380066

    10. Tseng, C.-H. and C.-L. Chang, "A broadband quadrature power splitter using metamaterial transmission line," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 1, 25-27, 2008.
    doi:10.1109/LMWC.2007.911981

    11. Seymour, B. C., "A class of broadband three-port TEM-mode hybrids," IEEE Trans. Microwave Theory Tech., Vol. 16, No. 2, 110-1106, 1968.

    12. Itoh, T. and C. Caloz, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, 17, John Wiley & Sons, 2005.

    13. Gonzalez, G., Microwave Transistor Amplifiers: Analysis and Design, 2nd Edition, 330, Prentice Hall, 1997.

    14. Tseng, C.-H. and C.-L. Chang, "Improvement of return loss bandwidth of balanced amplifier using metamaterial-based quadrature power splitters," IEEE Microwave and Wireless Components Letters, Vol. 43, No. 4, 269-271, 2008.
    doi:10.1109/LMWC.2008.918914

    15. Gillick, M., I. D. Robertson, and J. S. Joshi, "Coplanar waveguide two-stage balanced MMIC amplifier using impedance-transforming lumped-distributed branchline couplers," Proc. Inst. Elect. Eng., Vol. 141, 241-245, 1994.

    16. Banba, S. and H. Ogawa, "Small-sized MMIC amplifiers using thin dielectric layers," IEEE Trans. Microw. Theory Tech., Vol. 43, No. 3, 485-492, 1995.
    doi:10.1109/22.372090

    17. Akkaraekthalin, P., S. Jongjitaree, and V. Vivek, "Coplanar waveguide balanced amplifier using bipolar junction transistors and backed ground-plane hybrids," Proc. IEEE Region 10 Int. Conf. (TENCON), 732-735, 2001.

    18. Nelson, B. L., D. K. Umemoto, C. B. Perry, R. Dixit, B. R. Allen, M. E. Kim, and A. K. Oki, "High-linearity, low dc power monolithic GaAs HBT broadband amplifiers to 11 GHz," IEEE Microw. Millimeter-wave Monolit. Circuits Symp. Dig., 15-18, 1990.
    doi:10.1109/MCS.1990.110928

    19. Kobayashi, K. W., M. Nishimoto, L. T. Tran, H.Wang, J. Cowles, T. R. Block, J. Elliott, B. Allen, A. K. Oki, and D. C. Streit, "A 44 GHz InP-based HBT double-balanced amplifier with novel current re-use biasing ," IEEE RFIC Symp. Dig., 267-270, 1998.

    20. Seo, S., D. Pavlidis, and J.-S. Moon, "A wideband balanced AlGaN/GaN HEMT MMIC low noise amplifier for transceiver front-ends," Eur. Gallium Arsenide Compound Semicond. Appl. (EGAAS) Symp. Dig., 225-228, 2005.

    21. Engelbrecht, R. S. and K. Kurokawa, "A wide-band low noise L-band balanced transistor amplifier," Proc. IEEE, Vol. 53, No. 3, 237-248, 1965.
    doi:10.1109/PROC.1965.3681

    22. Imaoka, T., T., S. Banba, A. Minakawa, and N. Imai, "Millimeter-wave wide-band amplifiers using multilayer MMIC technology," IEEE Trans. Microw. Theory Tech., Vol. 45, No. 1, 95-101, 1997.
    doi:10.1109/22.552037