Vol. 31

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-07-27

A Second-Order BPF Using a Miniaturized-Element Frequency Selective Surface

By Omid Manoochehri, Seyyedpayam Abbasiniazare, Amir Torabi, and Keyvan Forooraghi
Progress In Electromagnetics Research C, Vol. 31, 229-240, 2012
doi:10.2528/PIERC12051014

Abstract

A new type of low-profile frequency selective surface (FSS) with an overall thickness of λ/40 and a second-order band pass frequency response is presented. The proposed FSS is composed of two metal layers, separated by a thin dielectric substrate. Each layer is a two-dimensional periodic structure with sub-wavelength periodic unit cells. By printing the same topology on each side of the substrate, a second-order frequency response is realized. To provide a physical insight into the operating mechanism, equivalent circuit networks are also investigated in each step of design procedure. Using the proposal technique, low profile and reduced sensitivity to angle of incident wave for both TE and TM polarizations are obtained and the overall thickness of the substrate is fairly thin. FSS samples are designed, fabricated, and installed in waveguide operating at X-band and a good agreement between the simulated and measured results is achieved.

Citation


Omid Manoochehri, Seyyedpayam Abbasiniazare, Amir Torabi, and Keyvan Forooraghi, "A Second-Order BPF Using a Miniaturized-Element Frequency Selective Surface," Progress In Electromagnetics Research C, Vol. 31, 229-240, 2012.
doi:10.2528/PIERC12051014
http://jpier.org/PIERC/pier.php?paper=12051014

References


    1. Munk, B., Frequency Selective Surfaces: Theory and Design, John Wiley & Sons, New York, 2000.
    doi:10.1002/0471723770

    2. Islam, S., J. Stiens, G. Poesen, R. Vounckx, J. Peeters, I. Bogaert, D. De Zutter, and W. De Raedt, "Simulation and experimental verification of W-band finite frequency selective surfaces on infinite background with 3D full wave solver nspwmlfma," Progress In Electromagnetics Research, Vol. 101, 189-202, 2010.
    doi:10.2528/PIER09122104

    3. Zhang, J.-C., Y.-Z. Yin, and J.-P. Ma, "Design of narrow band-pass frequency selective surfaces for millimeter wave applications," Progress In Electromagnetics Research, Vol. 96, 287-298, 2009.
    doi:10.2528/PIER09081702

    4. Martinez-Lopez, R., J. Rodriguez-Cuevas, A. E. Martynyuk, and J. I. Martinez Lopez, "An active ring slot with RF MEMS switchable radial stubs for reconfigurable frequency selective surface applications," Progress In Electromagnetics Research, Vol. 128, 419-440, 2012.

    5. Munk, B., Finite Antenna Arrays and FSS, Wiley-Interscience, New York, 2003.
    doi:10.1002/0471457531

    6. Huang, J. , T. Wu, and S. Lee, "Tri-band frequency selective surface with circular ring elements," IEEE Trans. on Antennas and Propagat., Vol. 42, 166-175, 1994.
    doi:10.1109/8.277210

    7. Li, H., B.-Z. Wang, G. Zheng, W. Shao, and L. Guo, "A reflectarray antenna backed on FSS for low RCS and high radiation performances," Progress In Electromagnetics Research C, Vol. 15, 145-155, 2010.
    doi:10.2528/PIERC10070303

    8. Lima, A. C. D. C. and E. A. Parker, "Fabry-Perot approach to the design of double layer FSS," IEEE Proc. Microwave Antennas Propagat., Vol. 143, 157-162, 1996.
    doi:10.1049/ip-map:19960236

    9. Munk, B., R. Kouyoumjian, and L. Peters Jr., "Reflection properties of periodic surfaces of loaded dipoles," IEEE Trans. on Antennas and Propagat., Vol. 19, 612-617, Sep. 1971.
    doi:10.1109/TAP.1971.1139995

    10. Monavar, F. M. and N. Komjani, "Bandwidth enhancement of microstrip patch antenna using Jerusalem cross-shaped frequency microstrip patch antenna using Jerusalem cross-shaped frequency selective surfaces by invasive weed optimization approach," Progress In Electromagnetics Research, Vol. 121, 103-120, 2011.
    doi:10.2528/PIER11051305

    11. Sarabandi, K. and N. Behdad, "A frequency selective surface with miniaturized elements," IEEE Trans. on Antennas and Propagat., Vol. 55, 2007.
    doi:10.1109/TAP.2007.895567

    12. Behdad, N. and M. Al-Joumayly, "A low-profile third-order band-pass frequency selective surface," IEEE Trans. on Antennas and Propagat., Vol. 57, 2009.
    doi:10.1109/TAP.2008.2011202

    13. Teo, P., et al., "Frequency-selective surfaces for GPS and DCS1800 mobile communication. 1. Quad-layer and single-layer FSS design," Microwaves, Antennas & Propagation, IET, Vol. 1, 314-321, 2007.
    doi:10.1049/iet-map:20050265

    14. Behdad, N., "A second-order band-pass frequency selective surface using nonresonant subwavelength periodic structure," Microwave Opt. Technol. Lett., Vol. 50, 1639-1643, 2008.
    doi:10.1002/mop.23445

    15. Pirhadi, A., et al., "Analysis and design of dual band high directive EBG resonator antenna using square loop FSS as superstrate layer," Progress In Electromagnetics Research, Vol. 70, 1-20, 2007.
    doi:10.2528/PIER07010201

    16. Guo, C., et al., "A novel dualband frequency selective surface with periodic cell perturbation," Progress In Electromagnetics Research B, Vol. 9, 137-149, 2008.
    doi:10.2528/PIERB08071302

    17. Gustafsson, M. and S. Nordebo, "Bandwidth, Q factor, and resonance models of antennas," Progress In Electromagnetics Research, Vol. 62, 1-20, 2006.
    doi:10.2528/PIER06033003

    18. Langley, R. J. and E. A. Parker, "Equivalent-circuit model for arrays of square loops," Electron. Letters, Vol. 18, 294-296, 1982.
    doi:10.1049/el:19820201

    19. Pozar, D., Microwave Engineering, John Wiley & Sons, Wiley, New York, 2008.

    20. Marcuvitz, N., Waveguide Handbook, Boston Technical Publishers, Lexington, MA, 1964.