Vol. 30

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-06-01

Experimental Characterization of a 434 MHz Wireless Energy Link for Medical Applications

By Giuseppina Monti, Luciano Tarricone, and Carlo Trane
Progress In Electromagnetics Research C, Vol. 30, 53-64, 2012
doi:10.2528/PIERC12032606

Abstract

This paper presents an experimental study of the performance of a wireless resonant energy link for implantable biomedical devices. More specifically, the proposed system consists of two planar resonators: a primary resonator that is connected to a power source and operates outside the body, and a secondary resonator that is connected to the implanted device and operates inside the body. Each resonator is a planar spiral resonator; the wireless power transmission is obtained by exploiting the magnetic coupling between the two resonators when they are operating at small distances. A prototype working in the ISM band centered at 434 MHz has been developed and analyzed. Reported results confirm that the proposed system is a viable solution for wirelessly providing implantable devices with the power necessary for operation.

Citation


Giuseppina Monti, Luciano Tarricone, and Carlo Trane, "Experimental Characterization of a 434 MHz Wireless Energy Link for Medical Applications," Progress In Electromagnetics Research C, Vol. 30, 53-64, 2012.
doi:10.2528/PIERC12032606
http://jpier.org/PIERC/pier.php?paper=12032606

References


    1. Laerhoven, K. V., et al., "Medical healthcare monitoring with wearable and implantable sensors," International Workshop on Ubiquitous Computing for Pervasive Healthcare Applications (UbiHealth), 2004.

    2. Park, D. J., Y. J. Lee, and J. Y. Park, "Long-term stabled non-enzymatic glucose sensor for continuously monitoring system applications," Proc. of the IEEE Nano/Micro Engineered and Molecular Systems, 704-707, China, 2008.
    doi:10.1109/NEMS.2008.4484426

    3. Salam, M. T., D. K. Nguyen, and M. Sawan, "A low-power implantable device for epileptic seizure detection and neurostimulation," Proc. of IEEE Biomedical Circuits and Systems Conference (BioCAS), 154-157, Paphos, Cyprus, 2010.

    4. Vidal, N., S. Curto, J. M. Lopez-Villegas, J. Sieiro, and F. M. Ramos, "Detuning study of implantable antennas inside the human body ," Progress In Electromagnetics Research, Vol. 124, 265-283, 2012.
    doi:10.2528/PIER11120515

    5. Gemio, J., J. Parron, and J. Soler, "Human body effects on implantable antennas for ism bands applications: Models comparison and propagation losses study," Progress In Electromagnetics Research, Vol. 110, 437-452, 2010.
    doi:10.2528/PIER10102604

    6. Ashoori, E., et al., "Design of double layer printed spiral coils for wirelessly-powered biomedical implants," Proc. of Engineering in Medicine and Biology Society, 2882-2885, Boston,Massachusetts, 2011.

    7. Goto, K. , T. Nakagawa, and S. Kawata, "An implantable power supply with an optically rechargeable lithium battery," IEEE Trans. Biomed. Eng., Vol. 48, No. 7, 830-833, 2001.
    doi:10.1109/10.930908

    8. Huang, F. J., et al., "Rectenna application of miniaturized implantable antenna design for triple-band biotelemetry communication," IEEE Trans. on Antennas and Propagation, Vol. 59, No. 7, 2646-2653, 2011.
    doi:10.1109/TAP.2011.2152317

    9. Laskovski, A. N. , M. R. Yuce, and T. Dissanayake, "Stacked spirals for biosensor telemetry," IEEE Sensor Journal, Vol. 11, No. 6, 1484-1490, 2011.
    doi:10.1109/JSEN.2010.2091123

    10. Jow, U. M. and M. Ghovanloo, "Modeling and optimization of printed spiral coils in air, saline, and muscle tissue environments," IEEE Trans. on Biomedical Circuits and Systems, Vol. 3, No. 5, 339-347, 2009.
    doi:10.1109/TBCAS.2009.2025366

    11. Jung, K. H., et al., "Wireless power transmission for implantable devices using inductive component of closed magnetic circuit," Electronics Letters, Vol. 45, No. 1, 21-22, 2009.
    doi:10.1049/el:20092241

    12. Kumar, A. , S. Mirabbasi, and M. Chiao, "Resonance-based wireless power delivery for implantable devices," Proc. of IEEE Biomedical Circuits and Systems Conference, 25-28, Beijing, China, 2009.
    doi:10.1109/BIOCAS.2009.5372092

    13. Tesla, N., "Apparatus for transmitting electrical energy,", U.S. Patent, 1119732, 1914.

    14. Monti, G. and F. Congedo, "UHF rectenna using a bowtie antenna," Progress In Electromagnetics Research C, Vol. 26, 181-192, 2012.
    doi:10.2528/PIERC11102706

    15. Monti, G. , L. Tarricone, and M. Spartano, "X-band planar rectenna," Antennas and Wireless Propagation Letters, Vol. 10, 1116-1119, 2011.
    doi:10.1109/LAWP.2011.2171029

    16. Vidal, N. , S. Curto, J. M. Lopez-Villegas, J. Sieiro, and F. M. Ramos, "Detuning study of implantable antennas inside the human body ," Progress In Electromagnetics Research, Vol. 124, 265-283, 2012.
    doi:10.2528/PIER11120515

    17. Gemio, J., J. Parron, and J. Soler, "Human body effects on implantable antennas for ism bands applications: Models comparison and propagation losses study," Progress In Electromagnetics Research, Vol. 110, 437-452, 2010.
    doi:10.2528/PIER10102604

    18. Li, X. and L. Cao, "Microstrip-based segmented coupling reader antenna for near-field RFID applications," Microwave and Optical Technology Lett., Vol. 53, No. 8, 1774-1777, 2011.
    doi:10.1002/mop.26144

    19. Qing, X. and Z. N. Chen, "Segmented spiral antenna for UHF near-field RFID," Proc. of IEEE Int. Symp. on Antennas and Propagation APSURSI, 996-999, 2011.
    doi:10.1109/APS.2011.5996446

    20. Poon, , A. S. Y. , S. O'Driscoll, and T. H. Meng, "Optimal operating frequency in wireless power transmission for implantable devices," Proc. of the 29th Int. Conf. of the IEEE Eng. in Medicine and Biology Society, Lyon, France, Aug. 23-26, 2007.

    21. Gabriel, C., S. Gabriel, and E. Corthout, "The dielectric properties of biological tissues: I. Literature survey," Phys. Med. Biol., Vol. 41, 2231-2249, 1996.
    doi:10.1088/0031-9155/41/11/001

    22. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz," Phys. Med. Biol., Vol. 41, 2251-2269, 1996.
    doi:10.1088/0031-9155/41/11/002

    23. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Phys. Med. Biol., Vol. 41, 2271-2293, 1996.
    doi:10.1088/0031-9155/41/11/003

    24. Oh, J. H., T. H. Kim, J. H. Yoo, J. K. Pack, Y. M. Yoon, M. Y. Choi, and S. Y. Lee, "Human exposure assessment for wireless power transmission system," PIERS Proceedings, Xi'an, China, Mar. 22-26, 2010..