Vol. 27
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2012-03-12
Antipodal Vivaldi Antenna Performance Booster Exploiting Snug-in Negative Index Metamaterial
By
Progress In Electromagnetics Research C, Vol. 27, 265-279, 2012
Abstract
Despite its popularity, the conventional Vivaldi antenna has long suffered from some design problems, such as tilted beam, low or inconsistent directivity and gain, complicated design and fabrication methods, and limited size reduction. These setbacks make its progress lag on the fast track of technological demand. Thus, the antenna overall performance is anticipated to improve by incorporating negative index metamaterial (NIM) into the design method, plus, it is also tunable. In this study, the design uses linearly-tapered shape-loading structure, as its projected performance crucially depends on the space in between the antenna arms, a prerequisite to further boost its performance when combined with NIM technology. A unique slitting approach synchronizes the integration between the Vivaldi antenna and NIM where a single layer NIM piece is simply snugged into the slit perpendicular to the middle antenna substrate. The major improvement in the spotlight is the capability of NIM to focus the entire beam so that it can radiate to the targeted direction. The measurement results are similar to the simulations in terms of high gain, where the gain and directivity of the antenna are increased up to 4 dB. The contrast of overall performance between the plain modified Vivaldi antenna and the ones with NIM evidently asserts the expected contribution of snug and boost method applied and attests its significant potentials for a broad range of ultra-wideband applications.
Citation
Adam Reda Hasan Alhawari, Alyani Ismail, Mohd Adzir Mahdi, and Raja Syamsul Azmir Raja Abdullah, "Antipodal Vivaldi Antenna Performance Booster Exploiting Snug-in Negative Index Metamaterial," Progress In Electromagnetics Research C, Vol. 27, 265-279, 2012.
doi:10.2528/PIERC12012906
References

1. Gibson, , P. J., "The Vivaldi aerial," 9th European Microwave Conference, , 101-105, , 1979.
doi:10.1109/EUMA.1979.332681

2. Mehdipour, , A., K. Mohammadpour-Aghdam, and R. Faraji-Dana, "Complete dispersion analysis of Vivaldi antenna for ultra wideband applications," Progress In Electromagnetics Research, Vol. 77, 85-96, , 2007.
doi:10.2528/PIER07072904

3. Wang, , Z., H. Zhang, and , "Improvements in a high gain UWB antenna with corrugated edges," Progress In Electromagnetics Research C , Vol. 6, 159-166, 2009.
doi:10.2528/PIERC09011404

4. Jolani, , F., G. R. Dadashzadeh, M. Naser-Moghadasi, and A. M. Dadgarpour, "Design and optimization of compact balanced antipodal Vivaldi antenna," Progress In Electromagnetics Research C, Vol. 9, 183-192, , 2009.
doi:10.2528/PIERC09071510

5. Bai, , J., S. Shi, and D. W. Prather, "Modified compact antipodal Vivaldi antenna for 4--50 GHz UWB application," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, 1051-1057, 2011..
doi:10.1109/TMTT.2011.2113970

6. Kota, , K., L. Shafai, and , "Gain and radiation pattern enhancement of balanced antipodal Vivaldi antenna," Electronics Letters , Vol. 47, 303-304, , 2011.
doi:10.1049/el.2010.7579

7. Fei, , P., Y. Jiao, W. Hu, and F. Zhang, "A miniaturized antipodal Vivaldi antenna with improved radiation characteristics," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 127-130, 2011.
doi:10.1109/LAWP.2011.2112329

8. Yang, , Y., Y. Wang, and A. E. Fathy, "Design of compact Vivaldi antenna arrays for UWB see through wall applications," Progress In Electromagnetics Research , Vol. 82, 401-418, 2008.
doi:10.2528/PIER08040601

9. Lin, , S., S. Yang, A. E. Fathy, and A. Elsherbini, "Development of a novel UWB Vivaldi antenna array using SIW technology," Progress In Electromagnetics Research , Vol. 90, 369-384, , 2009.
doi:10.2528/PIER09020503

10. Bourqui, J., M. Okoniewski, and E. C. Fear, "Balanced antipodal Vivaldi antenna with dielectric director for near-field microwave imaging," IEEE Transactions on Antennas and Propagations, Vol. 58, No. 7, 2318-2326, , Jul. 2010.
doi:10.1109/TAP.2010.2048844

11. Kota, , K., L. Shafai, and , "Gain and radiation pattern enhancement of balanced antipodal Vivaldi antenna," Electronics Letters, Vol. 47, No. 5, 303-304, , 2011.
doi:10.1049/el.2010.7579

12. Zhou, , B., T. J. Cui, and , "Directivity enhancement to Vivaldi antennas using compactly anisotropic zero-index metamaterials," IEEE Antennas and Wireless Propagation Letters, , Vol. 10, 326-329, 2011.
doi:10.1109/LAWP.2011.2142170

13. Zhou, , B., H. Li, X. Zou, and T.-J. Cui, , "Broadband and high-gain planar Vivaldi antennas based on inhomogeneous anisotropic zero-index metamaterials," Progress In Electromagnetics Research,, Vol. 120, 235-247, 2011.

14. Alhawari, , A. R. H., A. Ismail, M. A. Mahdi, and R. S. A. Raja Abdullah, "Development of novel tunable dual-band negative index metamaterial using open stub-loaded stepped-impedance resonator," Progress In Electromagnetics Research B, Vol. 35, 111-131, 2011.
doi:10.2528/PIERB11082209

15. Computer Simulation Technology (CST) Microwave Studio, 2010.

16. Chen, X., Chen, X., T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Physical Review E, , Vol. 70, 2004.

17. Smith, , D. R., D. C. Vier, T. Koschny, and C. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical Review E,, Vol. 71, 2005.