Vol. 26

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-01-05

Miniaturized Dual-Mode Resonators with Minkowski-Island-Based Fractal Patch for WLAN Dual-Band Systems

By Ji-Chyun Liu, Hsin-Hsiang Liu, Kuan-Dih Yeh, Chin-Yen Liu, Bing-Hao Zeng, and Chih-Chiang Chen
Progress In Electromagnetics Research C, Vol. 26, 229-243, 2012
doi:10.2528/PIERC11111502

Abstract

The miniaturized dual-mode dual-band band-pass filters (BPF) using Minkowski-island-based (MIB) fractal patch resonators are proposed in this paper. The BPF is mainly formed by a square patch resonator in which a MIB fractal configuration with 2nd order iteration is embedded in the patch. By perturbation and inter-digital coupling, the wide-band and dual-band responses are obtained respectively. For miniaturized wide-band design, at 2.41 GHz central frequency it has good measured characteristics including the wide bandwidth of 2.26-2.56 GHz (3-dB fractional bandwidth of 12.4%), low insertion loss of 0.72 dB, high rejection level (-52.5/-44.9 dB), and a patch size reduction with 60.6%. For compact dual-band design, the proposed filter covers the required bandwidths for WLAN bands (2.20-2.96 GHz and 4.74-5.85 GHz). The patch size reduction of 78.1% is obtained. Two transmission zeros are placed between the two pass-bands and resulted in good isolation.

Citation


Ji-Chyun Liu, Hsin-Hsiang Liu, Kuan-Dih Yeh, Chin-Yen Liu, Bing-Hao Zeng, and Chih-Chiang Chen, "Miniaturized Dual-Mode Resonators with Minkowski-Island-Based Fractal Patch for WLAN Dual-Band Systems," Progress In Electromagnetics Research C, Vol. 26, 229-243, 2012.
doi:10.2528/PIERC11111502
http://jpier.org/PIERC/pier.php?paper=11111502

References


    1. Wolff, I., "Microstrip bandpass filter using degenerate modes of a microstrip ring resonator ," Electron. Lett., Vol. 8, No. 12, 302-303, Jun. 1972.
    doi:10.1049/el:19720223

    2. Zhu, L., P. M. Wecowski, and K. Wu, "New planar dual-mode filter using cross-slotted patch resonator for simultaneous size and loss reduction," IEEE Trans. Microwave Theory & Tech., Vol. 47, No. 5, 650-654, May 1990.
    doi:10.1109/22.763171

    3. Zhu, L., B. C. Tan, and S. J. Quek, "Miniaturized dual-mode bandpass filter using inductively loaded cross-slotted patch resonator," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 1, 22-24, Jan. 2005.
    doi:10.1109/LMWC.2004.840967

    4. Tu, W. H. and K. Chang, "Miniaturized dual-mode bandpass filter with harmonic control," IEEE Microw. Wireless Compon. Lett., Vol. 12, No. 15, 838-840, Dec. 2005.

    5. Wu, S., M. H. Weng, S. B. Jhong, and M. S. Lee, "A novel crossed slotted patch dual-mode bandpass filter with two transmission zeros," Microwave Opt. Tech. Letters, Vol. 50, No. 3, 741-744, Mar. 2008.
    doi:10.1002/mop.23219

    6. Hung, C. Y., M. H. Weng, S. B. Jhong, S. Wu, and M. S. Lee, "Design of the wideband dual mode bandpass filter using stepped impedance resonators," Microwave Opt. Tech. Letters, Vol. 50, No. 4, 1104-1107, Apr. 2008.
    doi:10.1002/mop.23281

    7. Su, Y. K., J. R. Chen, M. H. Weng, and C. Y. Hung, "Design of a miniature and harmonic control patch dual mode bandpass filter with transmission zeros," Microwave Opt. Tech. Letters, Vol. 50, No. 8, 2161-2163, Aug. 2008.
    doi:10.1002/mop.23604

    8. Weng, M. H., D. S. Lee, R. Y. Yang, W. Wu, and C. L. Liu, "A sierpinski fractal-based dual mode bandpass filter," Microwave Opt. Tech. Letters, Vol. 50, No. 9, 2287-2289, Sep. 2008.
    doi:10.1002/mop.23641

    9. Weng, M. H., L. S. Jang, and W. Y. Chen, "A Sierpinski-based resonator applied for low loss and miniaturized bandpass filters," Microwave Opt. Tech. Letters, Vol. 51, No. 2, 411-413, Feb. 2009.
    doi:10.1002/mop.24061

    10. Ye, C. S., Y. K. Su, M. H. Weng, and H. W. Wu, "Resonant properties of the sierpinski-based fractal resonator and Its application on low-loss miniaturized dual mode bandpass filter," Microwave Opt. Tech. Letters, Vol. 51, No. 5, 1358-1361, May 2009.
    doi:10.1002/mop.24321

    11. Chen, W. L. and G. M. Wang, "Effective design of novel compact fractal-shaped microstrip coupled-line bandpass filters for suppression of the second harmonic," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 2, 74-76, Feb. 2009.
    doi:10.1109/LMWC.2008.2011311

    12. Xu, H. X., G. M. Wang, and C. X. Zhang, "Fractal-shaped UWB bandpass filter based on composite right/left handed transmission line," Electron. Lett.,, Vol. 46, No. 4, 285-287, Feb. 2010.
    doi:10.1049/el.2010.3139

    13. Hanna, Hanna, P. Jarry, E. Kerherve, and J. M. Pham, " A novel compact dual-mode bandpass filter using fractal shaped resonators," IEEE International Conference on Electronics Circuits and Systems, 343-346, 2006.
    doi:10.1109/ICECS.2006.379795

    14. Sung, Y., "Dual-mode dual-band filter with band notch structures," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 2, 73-75, Feb. 2010.
    doi:10.1109/LMWC.2009.2038434

    15. Sheta, A. F., N. Dib, and A. Mohra, "Investigation of new nondegenerate dual-mode microstrip patch filter," IEE Proc. Microw. Antennas Propag., Vol. 153, No. 1, 89-95, Feb. 2006.
    doi:10.1049/ip-map:20050103

    16. Liu, J. C., S. H. Chiu, C. P. Kuei, and B. H. Zeng, "A novel Minkowski-island-based fractal patch for dual-mode and miniaturization bandpass filters," Microwave Opt. Tech. Letters, Vol. 53, No. 3, 594-597, Mar. 2011.
    doi:10.1002/mop.25796

    17. Tsai, L. C. and C. W. Huse, "Dual-band bandpass filters using equal length coupled-serial-shunted lines and Z-transform techniques," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 4, 1111-1117, Apr. 2004.
    doi:10.1109/TMTT.2004.825680

    18. Kuo, J. T., T. H. Yeh, and C. C. Yeh, "Design of microstrip bandpass filters with a dual-passband response," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 4, 1331-1337, Apr. 2005.
    doi:10.1109/TMTT.2005.845765

    19. Huang, T. H., H. J. Chen, C. S. Chang, L. S. Chen, Y. H. Wang, and M. P. Houng, "A novel compact ring dual-mode filter with adjustable second-passband for dual-band applications," IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 6, 360-362, Jun. 2006.
    doi:10.1109/LMWC.2006.875607

    20. Chen, J. X., T. Y. Yum, J. L. Li, and Q. Xue, "Dual-mode dual-band bandpass filter using stacked-loop structure," IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 9, 502-504, Sep. 2006.
    doi:10.1109/LMWC.2006.880705

    21. Zhang, X. Y. and Q. Xue, "Novel dual-mode dual-band filters using coplanar-waveguide-fed ring resonators," IEEE Trans. Microwave Theory & Tech., Vol. 55, No. 10, 2183-2190, Oct. 2007.
    doi:10.1109/TMTT.2007.906501

    22. Wu, B., C. Liang, P. Qin, and Q. Li, "Compact dual-band filter using defected stepped impedance resonator," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 10, 674-676, Oct. 2008.
    doi:10.1109/LMWC.2008.2003459

    23. Luo, S. and L. Zhu, "A novel dual-mode dual-band bandpass filter based on a single ring resonator," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 8, 497-499, Aug. 2009.
    doi:10.1109/LMWC.2009.2024826

    24. Chiou, Y. C., C. Y. Wu, and J. T. Kuo, "New miniaturized dual-mode dual-band ring resonator bandpass filter with microwave C-sections," C. Y. Wu, and J. T. Kuo, Vol. 20, No. 2, 67-69, Feb. 2010.

    25. Baik, J. W., L. Zhu, and Y. S. Kim, "Dual-mode dual-band bandpass filter using balun structure for single substrate configuration ," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 11, 613-615, Nov. 2010.
    doi:10.1109/LMWC.2010.2060184

    26. Cohen, N., "Fractal element antennas," J. of Electron. Defense, 48-49, 1997.

    27. , , , Zeland Software Inc., IE3D version 10.0, Jan. 2005.