Vol. 25

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-11-13

Fast 2-D DOA and Polarization Estimation Using Arbitrary Conformal Antenna Array

By Peng Yang, Feng Yang, Zai-Ping Nie, Haijing Zhou, Biao Li, and Xianfa Tang
Progress In Electromagnetics Research C, Vol. 25, 119-132, 2012
doi:10.2528/PIERC11070706

Abstract

A fast and simple parameter estimation algorithm, joint azimuth angles, elevation angles and polarization parameters of incident sources for an arbitrary conformal array is proposed. Based on 2-D Discrete Fourier Transform (2-D DFT), the computational complexity can be reduced significantly compared with traditional 2-D space-search MUSIC or polynomial rooting (search-free) methods. The antenna elements can be mounted on arbitrary curved surfaces or platforms. Conformal array characteristics, such as directional radiation patterns of the elements and polarization are taken into consideration. Numerical simulations based on real-world conformal arrays are provided to demonstrate the performance of the proposed method.

Citation


Peng Yang, Feng Yang, Zai-Ping Nie, Haijing Zhou, Biao Li, and Xianfa Tang, "Fast 2-D DOA and Polarization Estimation Using Arbitrary Conformal Antenna Array," Progress In Electromagnetics Research C, Vol. 25, 119-132, 2012.
doi:10.2528/PIERC11070706
http://jpier.org/PIERC/pier.php?paper=11070706

References


    1. Liang, J. , D. Liu, and , "Two L-shaped array-based 2-d DOAs estimation in the presence of mutual coupling," Progress In Electromagnetics Research, , Vol. 112, 273-298, 2011.

    2. Yang, , P., F. Yang, and Z.-P. Nie, , "DOA estimation with sub-array divided technique and interpolated esprit algorithm on a cylindrical conformal array antenna," Progress In Electromagnet-ics Research, Vol. 103, 201-216, 2010.
    doi:10.2528/PIER10011904

    3. Mukhopadhyay, , M., , B. K. Sarkar, and A. Chakraborty, , "Aug-mentation of anti-jam GPS system using smart antenna with a simple DOA estimation algorithm," Progress In Electromagnetics Research,, Vol. 67, 231-249, , 2007.
    doi:10.2528/PIER06090504

    4. Tu, , T.-C., C.-M. Li, and C.-C. Chiu, , "The performance of polarization diversity schemes in outdoor micro cells," Progress In Electromagnetics Research,, Vol. 55, 175-188, , 2005.
    doi:10.2528/PIER04122901

    5. Schmit., , R. O., , "Multiple emitter location and signal parameter estimation," IEEE Trans. Antennas Propag., Vol. 34, No. 3, 276-280, , 1986..
    doi:10.1109/TAP.1986.1143830

    6. Siskind, I. , M. Wax, and , "Maximum likelihood localization of diversely polarized sources by simulated annealing," IEEE Trans. Antennas Propag., , Vol. 38, No. 7, 1111-1114, 1990.
    doi:10.1109/8.55625

    7. Lizzi, , L., , F. Viani, M. Benedetti, P. Rocca, and A. Massa, , "The m-DSO-esprit method for maximum likelihood DOA estimation," Progress In Electromagnetics Research, , Vol. 80, 477-497, 2008.
    doi:10.2528/PIER07121106

    8. Weiss, , A. J., B. Friedlander, and , "Direction finding for diversely polarized signals using polynomial rooting," IEEE Trans. Signal Process., , Vol. 41, No. 5, 1893-2021, 1993.
    doi:10.1109/78.215307

    9. Wong, K. T., , L. S. Li, and M. D. Zoltowski, "Root-MUSIC-based direction-¯nding and polarization estimation using diversely polarized possibly collocated antennas," IEEE Antennas Wireless Propag. Lett., Vol. 3, 129-132, 2004.
    doi:10.1109/LAWP.2004.831083

    10. Goossens, , R., H. Rogier, and , "Estimation of direction-of-arrival and polarization with diversely polarized antennas in a circular symmetry incorporating mutual coupling effects," Proc. EuCAP Nice, , 2006.

    11. Zhang, , X., , Y. Shi, and D. Xu, , "Novel blind joint direction of arrival and polarization estimation for polarization-sensitive uniform circular array," Progress In Electromagnetics Research, 19-37, , 2008.
    doi:10.2528/PIER08082302

    12. Pesavento, , M., C. F. Mecklenbrauker, and J. F. Bohme, "Multidimensional rank reduction estimator for parametric MIMO channel models," European Journal on Applied Signal Processing, , No. 9, , 1354-1363, 2004.
    doi:10.1155/S1110865704401036

    13. Richter, , A., , "Estimation of radio channel parameters: Models and algorithms," Ph.D. Thesis Dissertation, , 2005.

    14. Belloni, , F., , A. Richter, and V. Koivunen, , "DoA estimation via manifold separation for arbitrary array structures," IEEE Trans. Signal Process., Vol. 55, , No. 10, , 4800-4810, 2007.
    doi:10.1109/TSP.2007.896115

    15. Richter, , A., , F. Belloni, and V. Koivunen, , "DoA and polarization estimation using arbitrary polarimetric array configurations," IEEE Workshop Sensor Array and Multichannel Processing (SAM), , 55-59, , 2006.
    doi:10.1109/SAM.2006.1706090

    16. Costa, , M., A. Richter, and V. Koivunen, , "Azimuth, elevation and polarization estimation for arbitrary polarimetric array configurations," IEEE Workshop on Statistical Signal Process., 261-264, 2009.
    doi:10.1109/SSP.2009.5278590

    17. Costa, M., , A. Richter, and V. Koivunen, , "Low complexity az-imuth and elevation estimation for arbitrary array configurations," IEEE Intern. Conf. Acoust. Speech Signal Process., , 2185-2188, 2009.
    doi:10.1109/ICASSP.2009.4960051

    18. Hatke, G. F., K. W. Forsythe, and , "A class of polynomial rooting algorithms for joint azimuth/elevation estimation using multidimensional arrays," Asilomar Conference on Signals Systems and Computers,, Vol. 1, , 694-699, 1995.

    19. Goossens, , R. , H. Rogier, and , "Optimal beam forming in the presence of mutual coupling," Proc. Commun. Veh. Technol. Symp., , 13-18, 2006.
    doi:10.1109/SCVT.2006.334364

    20. Rubsamen, , M. a, A. B. Gershman, and , "Direction of arrival estimation for nonuniform sensor arrays: From manifold separation to Fourier domain music methods," IEEE Trans. Signal Process., Vol. 57, No. 2, 588-599, 2009.
    doi:10.1109/TSP.2008.2008560

    21. Babu, K. V. S., , "A fast algorithm for adaptive estimation of root-MUSIC polynomial coefficients," Proc. Int. Conf. Acoustics Speech, Signal Processing (ICASSP), 2229-2232, 1991.