Vol. 24

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-09-02

DOA Estimation Using Time-Frequency Conversion Pre-Processing Method

By Sang-Tae Kim, Ji-Tae Kim, and Y.-S. Choi
Progress In Electromagnetics Research C, Vol. 24, 13-24, 2011
doi:10.2528/PIERC11061504

Abstract

In many cases, the study of DOA estimation techniques is developed based on ideal condition of signal sources and array sensor antennas. But, there are much more errors as a result of signal shadow effects from noise contribution and interference of installation environment in real system. In this paper, the DOA estimation algorithm using the de-noising pre-processing based on time-frequency conversion analysis was proposed, and the performance was analyzed. This is focused on the improvement of DOA estimation at a lower SNR and interference environment.

Citation


Sang-Tae Kim, Ji-Tae Kim, and Y.-S. Choi, "DOA Estimation Using Time-Frequency Conversion Pre-Processing Method," Progress In Electromagnetics Research C, Vol. 24, 13-24, 2011.
doi:10.2528/PIERC11061504
http://jpier.org/PIERC/pier.php?paper=11061504

References


    1. Schmidt, R. O., "Multiple emitter location and signal parameter estimation," IEEE Trans. on Antennas and Propagation, Vol. 34, 276-280, 1986.
    doi:10.1109/TAP.1986.1143830

    2. Michael, L. and L. L. Scharf, "A new subspace identification algorithm for high-resolution DOA estimation," IEEE Trans. on Antennas and Propagation, Vol. 50, No. 10, 1832-1390, Oct. 2002.

    3. Ray, R. and T. Kailath, "ESPRIT --- Estimation of signal parameter via rotational invariance techniques," IEEE Trans. on Acoust. Speech Signal Process., Vol. 37, No. 7, 984-995, Jul. 1989.
    doi:10.1109/29.32276

    4. Jaffer, A. G., Maximum likelihood direction finding of stochastic sources: A separable solution, Proc. ICASSP, 2893-2896, New York, USA, Apr. 1988.

    5. Fallahi, R. and M. Roshandel, "Effect of mutual coupling and configuration of concentric circular array antenna on the signal to interference performance in CDMA systems," Progress In Electromagnetics Research, Vol. 76, 427-447, 2007.
    doi:10.2528/PIER07070104

    6. Xue, Y., J. Wang, and Z. Liu, "Wavelet packets-based direction-of arrival estimation," Proc. ICASSP, II.505-II.508, May 2004.

    7. Wang, B., Y. Wang, and H. Chen, "Spatial wavelet transform preprocessing for direction of arrival estimation," Antennas and Propagation Society International Symposium, Vol. 4, 672-675, 2002.

    8. Sathish, R. and G. V. Anand, "Spatial wavelet packet denoising for improved DOA estimation," Proceedings of the 14th IEEE Signal Processing Society Workshop on Machine Learning for Signal Process., 745-754, Oct. 2004.

    9. Harabi, F., H. Changuel, and A. Gharsallah, "Direction of arrival estimation method using a 2-L shape arrays antenna," Progress In Electromagnetics Research, Vol. 69, 145-160, 2007.
    doi:10.2528/PIER06120204

    10. Barabell, A. J., Improving the resolution performance of the eigen-structure based direction finding algorithm, Proc. ICASSP, 336-339, Boston, MA, 1983.

    11. Cadzow, J. A., Y. S. Kim, and D. C. Shiue, "General direction-of-arrival estimation: A signal subspace approach," IEEE Trans. on Aerospace and Electronic System, Vol. 25, 31-47, Jan. 1989.
    doi:10.1109/7.18659

    12. Krim, H. and M. Viberg, "Two decades of array signal processing research," IEEE Signal Processing Magazine, 67-94, Jul. 1996.

    13. Stoica, P. and A. Nehorai, "Performance comparison of subspace rotation and MUSIC methods for direction estimation," IEEE Trans. on Signal Processing, Vol. 39, 446-453, Feb. 1991.
    doi:10.1109/78.80828

    14. Friedlander, B., "A sensitive analysis of MUSIC algorithm," IEEE Trans. on Acoust., Vol. 38, 1743-1751, Oct. 1990.

    15. ITU-R SM.1794, Wideband Instantaneous Bandwidth Spectrum Monitoring Systems, International Telecommunication Union, Jan. 2007.

    16. Kim, S. T., J. S. Lim, and K. R. Cho, "Occupied bandwidth measurement of multi-FA CDMA signal at remote site," MW Journal, Vol. 51, No. 8, Aug. 2008.

    17. Donoho, D. L., "De-noise by soft-thresholding," IEEE Trans. on Information Theory, Vol. 41, No. 3, 613-627, May 1995.
    doi:10.1109/18.382009

    18. Chang, S. G., B. Yu, and M. Vetterli, "Adaptive wavelet thresholding for image denoising and compression," IEEE Trans. on Image Processing, Vol. 9, 1532-1546, Sep. 2000.
    doi:10.1109/83.862633

    19. Rao, A. M. and D. L. Jones, "A denoising approach to multisensor signal estimation," IEEE Trans. on Signal Process., Vol. 48, 1225-1234, 2000.
    doi:10.1109/78.839971

    20. Percival, D. B. and A. T. Walden, Wavelet Methods for Time Series Analysis, 206-450, Cambridge University, UK, 2000.

    21. Anbarjafari, G. and H. Demirel, "Image super resolution based on interpolation of wavelet domain high frequency subbands and the spatial domain input image," ETRI Journal, Vol. 32, No. 3, 390-394, Jun. 2010.
    doi:10.4218/etrij.10.0109.0303