Vol. 22

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-06-22

LTCC Vertically-Stacked Cross-Coupled Bandpass Filter for Lmds Band Applications

By Kuo-Sheng Chin, Cheng Hua Chen, and Chih Chun Chang
Progress In Electromagnetics Research C, Vol. 22, 123-135, 2011
doi:10.2528/PIERC11051101

Abstract

This study develops a compact 28 GHz bandpass filter on a low-temperature co-fired ceramic substrate for applications in LMDS (Local Multipoint Distribution Service) bands. The filter comprises two pairs of verticallystacked cross-coupled open loops with vertical interconnection structures, achieving compactness, high integration, and superior frequency selectivity. Attaining selective response with two transmission zeros requires adjusting the couplings of adjacent resonators and external quality factor. The open loops are fed by using the three-via vertical interconnections to prevent any electrical effect on the filter. Measurements correlate closely with the simulation results: this study achieved a bandwidth of 2.1 GHz (27.6-29.7 GHz) with two zeros located at 25.8 GHz and 31.1 GHz, and a compact size of 2.69 x 2.66 x 0.4 mm3.

Citation


Kuo-Sheng Chin, Cheng Hua Chen, and Chih Chun Chang, "LTCC Vertically-Stacked Cross-Coupled Bandpass Filter for Lmds Band Applications," Progress In Electromagnetics Research C, Vol. 22, 123-135, 2011.
doi:10.2528/PIERC11051101
http://jpier.org/PIERC/pier.php?paper=11051101

References


    1. Chen, K.-S. and C.-Y. Chu, "A propagation study of the 28 GHz LMDS system performance with M-QAM modulations under rain fading," Progress In Electromagnetics Research, Vol. 68, 35-51, 2007.
    doi:10.2528/PIER06070603

    2. Kulke, R., G. Möllenbeck, W. Simon, A. Lauer, and M. Rittwege, "Point-to-multipoint transceiver in LTCC for 26 GHz," IMAPS-Nordic, 50-53, Stockholm, 2002.

    3. Chin, K.-S., H.-T. Chang, J.-A. Liu, B.-G. Chen, J.-C. Cheng, and J. S. Fu, "Stacked patch antenna array on LTCC substrate operated at 28 GHz," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 4, 527-538, 2011.
    doi:10.1163/156939311794500223

    4. Wang, L.-M., et al., "Cross-coupled YBCO filters with spurious suppression using tap-connection technique and skew-symmetric feeds," IEEE Trans. Applied Superconductivity, Vol. 17, 894-897, Jun. 2007.
    doi:10.1109/TASC.2007.897409

    5. Tang, C.-W., "Design of four-ordered cross-coupled bandpass ¯lters with low-temperature co-fired ceramic technology," IET Microw. Antennas Propag., Vol. 3, 402-409, 2009.
    doi:10.1049/iet-map.2008.0118

    6. Lin, C.-H., C.-H. Wang, and C.-H. Chen, "A simple design procedure for the asynchronous box-section filter," Asia-Pacific Microwave Conference Proceedings, 807-810, Thailand, 2007.

    7. Di, H., B. Wu, X. Lai, and C.-H. Liang, "Synthesis of cross-coupled triple-passband filters based on frequency transformation," IEEE Microwave and Wireless Components Letters, Vol. 20, No. 8, 432-434, Aug. 2010.
    doi:10.1109/LMWC.2010.2049829

    8. Liang, C.-H., C.-H. Chen, and C.-Y. Chang, "Fabrication-tolerant microstrip quarter-wave stepped-impedance resonator filter," IEEE Trans. Microwave Theory Tech., Vol. 57, 1163-1172, May 2009.
    doi:10.1109/TMTT.2009.2017345

    9. Fan, J.-W., C.-H. Liang, and X.-W. Dai, "Design of cross-coupled dual-band filter with equal-length split-ring resonators," Progress In Electromagnetics Research, Vol. 75, 285-293, 2007.
    doi:10.2528/PIER07060904

    10. Yang, B., E. Skafidas, and R. J. Evans, "60 GHz compact integrated cross-coupled SIR-MH bandpass filter on bulk CMOS," Electronics Letters, Vol. 44, No. 12, 738-740, Jun. 2008.
    doi:10.1049/el:20080599

    11. Kuo, J.-T., S.-C. Tang, and S.-H. Lin, "Quasi-elliptic function bandpass filter with upper stopband extension and high rejection level using cross-coupled stepped-impedance resonators," Progress In Electromagnetics Research, Vol. 114, 395-405, 2011.

    12. Zhan, J.-S. and J.-L. Wang, "A simple four-order cross-coupled filter with three transmission zeros," Progress In Electromagnetics Research C, Vol. 8, 57-68, 2009.
    doi:10.2528/PIERC09041107

    13. Wang, Z., S. Bu, and Z.-X. Luo, "A Ka-band third-order cross-coupled substrate integrated waveguide bandpass filter base on 3D LTCC," Progress In Electromagnetics Research C, Vol. 17, 173-180, 2010.
    doi:10.2528/PIERC10100903

    14. Hong, J.-S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Application Engineering, John Wiley & Sons, New York, 2001.

    15. Chin, K.-S. and D.-J. Chen, "Harmonic-suppressing bandpass filter based on coupled triangular open-loop stepped-impedance resonators," Microw. Optical Tech. Lett., Vol. 52, No. 1, 187-191.
    doi:10.1002/mop.24866

    16. Chin, K.-S. and D.-J. Chen, "Novel microstrip bandpass filters using direct-coupled triangular stepped-impedance resonators for spurious suppression," Progress In Electromagnetics Research Letters, Vol. 12, 11-20, 2009.
    doi:10.2528/PIERL09090602

    17. Wen, S. and L. Zhu, "Numerical synthesis design of coupled resonator fiiters," Progress In Electromagnetics Research, Vol. 92, 333-346, 2009.
    doi:10.2528/PIER09041102

    18. Xiao, J.-K. and Y. Li, "Novel compact microstrip square ring bandpass filters," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1817-1826, 2006.
    doi:10.1163/156939306779292156

    19. Wang, Z., X. Zeng, B. Yan, R. Xu, and W. Lin, "A millimeter-wave E-plane band-pass filter using multilayer low temperature co-fired ceramic (LTCC) technology," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 1, 71-79, 2010.
    doi:10.1163/156939310790322091

    20. Panther, A., C. Glaser, M. G. Stubbs, and J. S. Wight, "Vertical transitions in low temperature co-fired ceramics for LMDS applications," IEEE MTT-S Int Microwave Symp Dig., 1907-1910, 2001.

    21. Valois, R., D. Baillargeat, S. Verdeyme, M. Lahti, and T. Jaakola, "High performance of shielded LTCC vertical transitions from DC up to 50 GHz," IEEE Trans. Microwave Theory Tech., Vol. 53, 2026-2032, 2005.
    doi:10.1109/TMTT.2005.848832

    22. Stark, A. and A. F. Jacob, A broadband vertical transition for millimeter-wave applications, Proceedings of the 38th European Microwave Conference, 476-479, 2008.

    23. Stark, A., H. Olbert, and A. F. Jacob, Defected and floating ground structures for vertical interconnects, Proceedings of the 39th European Microwave Conference, 153-156, 2009.

    24. Xia, L., R.-M. Xu, and B. Yan, "LTCC interconnect modeling by support vector regression," Progress In Electromagnetics Research, Vol. 69, 67-75, 2007.
    doi:10.2528/PIER06120503