Vol. 20

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-02-27

Arbitrary Voxel Selection for Accelerating a Ray Tracing-Based Field Prediction Model in Urban Environments

By Pierpaolo Usai, Alessandro Corucci, Simone Genovesi, and Agostino Monorchio
Progress In Electromagnetics Research C, Vol. 20, 43-53, 2011
doi:10.2528/PIERC11010403

Abstract

Great accuracy and reasonable computational time are desirable in a deterministic ray tracing model for an efficient radio frequency planning. An algorithm to speed up a ray tracing engine is described which allows to select arbitrary areas around transmitters and receivers by dividing the scene in a voxel chessboard. The reliability of the algorithm has been evaluated by comparing measured and predicted path losses in real urban scenarios while the algorithm performance is expressed in terms of computational time reduction.

Citation


Pierpaolo Usai, Alessandro Corucci, Simone Genovesi, and Agostino Monorchio, "Arbitrary Voxel Selection for Accelerating a Ray Tracing-Based Field Prediction Model in Urban Environments," Progress In Electromagnetics Research C, Vol. 20, 43-53, 2011.
doi:10.2528/PIERC11010403
http://jpier.org/PIERC/pier.php?paper=11010403

References


    1. Catedra, M. F., J. Perez, F. S. de Adana, and O. Gutierrez, "E±cient ray-tracing techniques for three-dimensional analyses of propagation in mobile communications: Application to picocell and microcell scenarios," IEEE Antennas and Prop. Mag., Vol. 40, No. 2, 15-28, Apr. 1998.
    doi:10.1109/74.683539

    2. Bittner, J., P. Wonka, and M. Wimmer, "Visibility preprocessing for urban scenes using line space partitioning," IEEE Proceed. 9th Conf. Computer Graphics and Applications, 276-284, Oct. 2001.

    3. Santini, S., S. Bertini, and A. Monorchio, "An acceleration technique for ray tracing simulation based on a shadow volumetric binary and line space partitioning," IEEE Proceed. Antennas and Propag., 1-4, Jul. 2008.

    4. Athanasiadou, G. E. and A. R. Nix, "A novel 3-D indoor ray-tracing propagation model: The path generator and evaluation of narrow-band and wide-band predictions," IEEE Trans. Vehicular Technology, Vol. 49, No. 4, 1152-1168, Jul. 2000.
    doi:10.1109/25.875222

    5. Corre, Y., Y. Lostanlen, and Y. Le Helloco, "A new approach for radio propagation modeling in urban environment: Knife-edge di®raction combined with 2D ray-tracing," IEEE Proceed. 55th Vehicular Tech. Conf., Vol. 1, 507-511, 2002.

    6. Rautiainen, T., R. Hoppe, and G. Wölfle, "Measurements and 3D Ray Tracing propagation predictions of channel characteristics in indoor environments," IEEE 18th Intern. Symp. PIMRC, 1-5, Sep. 2007.

    7. Rizk, K., J. F. Wagen, and F. Gardiol, "Two-dimensional ray-tracing modeling for propagation prediction in microcellular environments," IEEE Trans. Vehicular Technology, Vol. 46, No. 2, 508-518, May 1997.
    doi:10.1109/25.580789

    8. Degli Espositi, V., F. Fuschini, E. M. Vitucci, and G. Falciasecca, "Speed-up techniques for Ray Tracing field prediction models," IEEE Trans. Antennas and Propag., Vol. 57, No. 5, 1469-1480, May 2009.
    doi:10.1109/TAP.2009.2016696

    9. Song, H. B., H. G. Wang, K. Hong, and L. Wang, "A novel source localization scheme based on unitary esprit and city electronic maps in urban environments," Progress In Electromagnetics Research, Vol. 94, 243-262, 2009.
    doi:10.2528/PIER09051703

    10. El-Sallabi, H. M. and P. Vainikainen, "Radio wave propagation in perpendicular streets of urban street grid for microcellular communications. Part I: Channel modeling-abstract," Progress In Electromagnetics Research, Vol. 40, 229-254, 2003.
    doi:10.2528/PIER02112502

    11. Fugen, T., J. Maurer, T. Kayser, and W. Wiesbeck, "Capability of 3-D ray tracing for defining parameter sets for the specification of future mobile communications systems," IEEE Trans. Antennas and Propag., Vol. 54, No. 11, 3125-3137, Nov. 2006.
    doi:10.1109/TAP.2006.883988

    12. Giliberti, C., F. Boella, A. Bedini, R. Palomba, and L. Giuliani, "Electromagnetic mapping of urban areas: The example of monselice (Italy)," PIERS Online, Vol. 5, No. 1, 2009.
    doi:10.2529/PIERS081006112200

    13. Di Giampaolo, E. and F. Bardati, "A projective approach to electromagnetic propagation in complex environments," Progress In Electromagnetics Research B, Vol. 13, 357-383, 2009.
    doi:10.2528/PIERB09012904

    14. Liang, G. and H. L. Bertoni, "A new approach to 3-D ray tracing for propagation prediction in cities," IEEE Trans. Antennas and Propag., Vol. 46, No. 6, 853-863, Jun. 1998.
    doi:10.1109/8.686774

    15. Yun, Z., Z. Zhang, and M. F. Iskander, "A ray-tracing method based on the triangular grid approach and application to propagation prediction in urban environments," IEEE Trans. Antennas and Propag., Vol. 50, No. 5, 750-758, May 2002.
    doi:10.1109/TAP.2002.1011243

    16. Klimaszewski, K. S. and T. W. Sederberg, "Faster ray tracing using adaptive grids," IEEE Computer Graphics and Applications, Vol. 17, No. 1, 42-51, Jan.-Feb. 1997.
    doi:10.1109/38.576857

    17. Tan, S. Y. and H. S. Tan, "Microcellular communications propagation model for a city street grid," IEEE Proceed. Antennas and Propag., Vol. 3, 1910-1913, Jun. 1994.