We present an optical model based on Green function to investigate the effect of using Single Wall Carbon Nanotube (SWCNT) as anode for infrared light emitting devices (IR QD-LEDs). To the best of our knowledge there is no report in using SWCNT as anode in IR QD-LEDs. We have studied the emitted power distribution among the different optical modes (air, substrate, anode/organics, and surface plasmon modes (SP)), angular intensity distribution, and the emission spectral characteristics. We have found that the light outcoupling efficiency of IR QD-LEDs based on SWCNT as anode was increased nearly by a factor of 4 relative to that one based on indium-tin oxide (ITO). We also investigated the effect of using different cathode materials on the optical characteristics of IR QD-LEDs.
2. Li, J., L. Hu, L. Wang, Y. Zhou, G. Grüner, and T. J. Marks, "Organic light-emitting diodes having carbon nanotube anodes," Nano Lett., Vol. 6, No. 11, 2472-2477, 2006.
doi:10.1021/nl061616a
3. Zhang, D., K. Ryu., X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, and C. Zhou, "Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes," Nano Lett., Vol. 6, No. 9, 1880-1886, 2006.
doi:10.1021/nl0608543
4. Green, A. A. and M. C. Hersam, "Colored semitransparent conductive coatings consisting of monodisperse metallic single-walled carbon nanotubes," Nano Lett., Vol. 8, No. 5, 1417-1422, 2008.
doi:10.1021/nl080302f
5. Contreras, M., T. Barnes, J. van de Lagemaat, G. Rumbles, T. J. Coutts, C. Weeks, P. Glatkowski, I. Levitsky, and J. Peltola, Application of single-wall carbon nanotubes as transparent electrodes in Cu (In, Ga) Se2-based solar cells, IEEE Photovoltaic Energy Conversion Conference, Waikoloa, Hawaii, 2006.
6. Kim, H., C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, "Electrical, optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices," J. Appl. Phys., Vol. 86, No. 11, 6451-6461, 1999.
doi:10.1063/1.371708
7. Steckel, J. S., et al., "1.3 μm to 1.55 μm tunable electroluminescence from PbSe quantum dots embedded within an organic device," Advanced Materials, Vol. 15, No. 21, 1862-1866, 2003.
doi:10.1002/adma.200305449
8. Zhang, M., S. F., A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R. Atkinson, and R. H. Baughman, "Strong, transparent, multifunctional, carbon nanotube sheets," Science, Vol. 309, No. 5738, 1215-1219, 2005.
doi:10.1126/science.1115311
9. Weeks, C., et al., Single-wall carbon nanotubes as transparent electrodes for photovoltaics, IEEE Photovoltaic Energy Conversion Conference, Waikoloa, Hawaii, 2006.
10. Celebi, K., T. D. Heidel, and M. A. Baldo, "Simplified calculation of dipole energy transport in a multilayer stack using dyadic Green's functions," Optics Express, Vol. 15, No. 4, 1762-1772, 2007.
doi:10.1364/OE.15.001762
11. Farghal, A. E., S. Wageh, and A. E.-S. Abou-El-Azm, "Electromagnetic modeling of outcoupling efficiency and light emission in near-infrared quantum dot light emitting devices," Progress In Electromagnetics Research B, Vol. 24, 263-284, 2010.
doi:10.2528/PIERB10070206
12. Crawford, O. H., "Radiation from oscillating dipoles embedded in a layered system," J. Chem. Phys., Vol. 89, No. 10, 6017, 1988.
doi:10.1063/1.455416
13. Bulovic, V., V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, "Weak microcavity effects in organic light-emitting devices," Phys. Rev. B, Vol. 58, No. 7, 3730, 1998.
doi:10.1103/PhysRevB.58.3730
14. Kahen, K. B., "Rigorous optical modeling of multilayer organic light-emitting diode devices," Appl. Phys. Lett., Vol. 78, No. 12, 1649, 2001.
doi:10.1063/1.1356453
15. Chen, et al., "Electromagnetic modeling of organic light-emitting devices," Journal of Lightwave Technology, Vol. 24, No. 6, 2450, 2006.
doi:10.1109/JLT.2006.874591
16. Chance, R. R., A. Prock, and R. Silbey, "Molecular fluorescence and energy transfer near metal interfaces," Advances in Chemical Physics, I. Prigogine and S. A. Rice (eds.), 1{65, Wiley, 1978.
17. Himcinschi, C., N. Meyer, S. Hartmann, M. Gersdorff, M. Friedrich, H.-H. Johannes, W. Kowalsky, M. Schwambera, G. Strauch, M. Heuken, and D. R. T. Zahn, "Spectroscopic ellipsometric characterization of organic films obtained via organic vapor phase deposition ," Appl. Phys. A, Vol. 80, No. 3, 551-555, 2005.
doi:10.1007/s00339-004-2973-7
18. Palik, E. D. and Handbook of Optical Constants of Solids, Academic, New York, 1985.
19. Wang, T., Light scattering study on single wall carbon nanotube (SWNT) dispersions, Thesis, Georgia Institute of Technology, 2004.
20. Wehrenberg, B. L., C. Wang, and P. Guyot-Sionnest, "Interband and intraband optical studies of pbse colloidal quantum dots," J. Phys. Chem. B, Vol. 106, No. 41, 10634-10640, 2002.
doi:10.1021/jp021187e
21. Tessler, N., V. Medvedev, M. Kazes, S. H. Kan, and U. Banin, "Efficient near-infrared polymer nanocrystal light-emitting diodes," Science, Vol. 295, No. 5559, 1506-1508, 2002.
doi:10.1126/science.1068153
22. Bourdakos, K. N., D. M. Dissanayake, T. Lutz, S. R. Silva, and R. J. Curry, "Highly efficient near-infrared hybrid organic-inorganic nanocrystal electroluminescence device," Appl. Phys. Lett., Vol. 92, No. 15, 153311, 2008.
doi:10.1063/1.2909589