Vol. 15
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2010-08-12
A Reflectarray Antenna Backed on FSS for Low RCS and High Radiation Performances
By
Progress In Electromagnetics Research C, Vol. 15, 145-155, 2010
Abstract
This paper investigates the application of frequency-selective surface (FSS) in reflectarray antennas for the purpose of reducing radar cross section (RCS) level. Different from previous reports, the presented band-stop FSS structure is also characterized by the suppression of surface waves, which makes a contribution to better radiation performance. Two 14 x 14 reflectarray antennas backed on the FSS ground and a solid ground are designed and fabricated. Simulated and measured results show that the FSS ground can improve the `in- band' gain by 1.1 dB, decrease the sidelobe level by 6.4 dB, and reduce the `out-of-band' RCS effectively when compared with the antenna with a solid ground plane of the same size.
Citation
Hua Li, Bing-Zhong Wang, Gang Zheng, Wei Shao, and Lin Guo, "A Reflectarray Antenna Backed on FSS for Low RCS and High Radiation Performances," Progress In Electromagnetics Research C, Vol. 15, 145-155, 2010.
doi:10.2528/PIERC10070303
References

1. Pozar, D. M., S. D. Targonski, and H. D. Syrigos, "Design of millimeter wave microstrip reflecarrays," IEEE Trans. Antennas Propagat., Vol. 45, 287-296, Feb. 1997.
doi:10.1109/8.560348

2. Sayidmarie, K. H. and M. E. Bialkowski, "Phasing of a microstrip reflectarray using multi-dimensional scaling of its elements," Progress In Electromagnetics Research B, Vol. 2, 125-136, 2008.
doi:10.2528/PIERB07110402

3. Venneri, F., S. Costanzo, and G. Di Massa, "Transmission line analysis of aperture-coupled reflectarrays," Progress In Electromagnetics Research C, Vol. 4, 1-12, 2008.

4. Venneri, F., S. Costanzo, G. Di Massa, and G. Amendola, "Aperture-coupled reflectarrays with enhanced bandwidth features," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 11-22, 1527-1537, 2008.
doi:10.1163/156939308786390247

5. Tahir, F. A., H. Aubert, and E. Girard, "Equivalent electrical circuit for designing MEMS-controlled reflectarray phase shifters," Progress In Electromagnetics Research, Vol. 100, 1-12, 2010.
doi:10.2528/PIER09112506

6. Huang, J. and J. A. Encinar, Reflectarray Antennas, John Wiley & Sons Inc., Hoboken, NJ, 2007.

7. Collardey, S., A.-C. Tarot, P. Pouliguen, and K. Mahdjoubi, "Use of electromagnetic band-gap materials for RCS reduction," Microwave and Optical Technology Letters, Vol. 44, 546-550, Mar. 2005.
doi:10.1002/mop.20693

8. Bhattacharyya, A. K., "Radar cross section reduction of a flat plate by RAM coating," Microwave and Optical Technology Letters, Vol. 3, 324-327, Sep. 1990.
doi:10.1002/mop.4650030908

9. Li, Y., Y. Liu, and S.-X. Gong, "Microstrip antenna using groundcut slots and miniaturization techniques with low RCS," Progress In Electromagnetics Research Letters, Vol. 1, 211-220, 2008.

10. Zheng, J.-H., Y. Liu, and S.-X. Gong, "Aperture coupled microstrip antenna with low RCS," Progress In Electromagnetics Research Letters, Vol. 3, 61-68, 2008.
doi:10.2528/PIERL08013102

11. Chambers, B. and A. Tennant, "General analysis of the phase-switched screen, Part 1: The single layer case," Radar Sonar and Navigation, Vol. 149, No. 5, 243-247, Oct. 2002.
doi:10.1049/ip-rsn:20020534

12. Zheng, Q.-R., Y.-M. Yan, X.-Y. Cao, and N.-C. Yuan, "Hign impedance ground plane (HIGP) incorporated with resistance for radar cross section (RCS) reduction of antenna," Progress In Electromagnetics Research, Vol. 84, 307-319, 2008.
doi:10.2528/PIER08072003

13. Misran, N., R. Cahill, and V. F. Fusco, "RCS reduction technique for reflectarray antennas," Electron. Lett., Vol. 39, 1630-1631, Nov. 2003.

14. Moghadasi, S. M., A. R. Attari, and M. M. Mirsalehi, "Compact and wideband 1-D mushroom-like EBG filters," Progress In Electromagnetics Research, Vol. 83, 323-333, 2008.
doi:10.2528/PIER08050101

15. Shaban, H. F., H. A. Elmikatay, and A. A. Shaalan, "Study the effects of electromagnetic band-gap (EBG) substrate on two patches microstrip antenna," Progress In Electromagnetic Research B, Vol. 10, 55-74, 2008.
doi:10.2528/PIERB08081901

16. Zhang, L.-J., C.-H. Liang, L. Liang, and L. Chen, "A novel design approach for dual band electromagnetic band gap structure," Progress In Electromagnetic Research M, Vol. 4, 81-91, 2008.
doi:10.2528/PIERM08071107

17. Shum, K. M., Q. Xue, C. H. Chan, and K. M. Luk, "Gain enhancement of microstrip reflectarray incorporating a PBG structure," Microwave and Optical Technology Letters, Vol. 28, 114-116, Jan. 2001.
doi:10.1002/1098-2760(20010120)28:2<114::AID-MOP11>3.0.CO;2-6

18. Li, H., B.-Z. Wang, and P. Du, "Novel broadband reflectarray antenna with windmill-shaped elements for millimeter-wave application," Intl. Journal of Infrared & Milimetere Waves, Vol. 28, 339-344, Mar. 2007.
doi:10.1007/s10762-007-9218-8

19. Tsai, F.-C. E. and M. E. Bialkowski, "Designing a 161-element Ku-band microstrip reflectarray of variable size patches using an equivalent unit cell waveguide approach," IEEE Trans. Antennas Propag., Vol. 51, 2953-2962, Oct. 2003.

20. Bialkowski, M. E. and K. H. Sayidmarie, "Bandwidth considerations for a microstrip reflectarray," Progress In Electromagnetics Research B, Vol. 3, 173-187, 2008.
doi:10.2528/PIERB07120405

21. Lee, C. K., R. J. Langley, and E. A. Parker, "Single layer multiband frequency selective surfaces," IEE Proceedings Part H, Vol. 132, 411-412, 1985.

22. Bamford, L. D., J. R. James, and A. F. Fray, "Minimising mutual coupling in thick substrate microstrip antenna arrays," Electronics Lett., Vol. 33, 648-650, Apr. 1997.
doi:10.1049/el:19970448

23. Radisic, V., Y. Qian, and R. Coccioli, "Novel 2-D photonic bandgap structure for microstrip lines," IEEE Microwave Guided Wave Lett., Vol. 8, 69-71, Feb. 1998.
doi:10.1109/75.658644