Vol. 15

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2010-08-12

A Reflectarray Antenna Backed on FSS for Low RCS and High Radiation Performances

By Hua Li, Bing-Zhong Wang, Gang Zheng, Wei Shao, and Lin Guo
Progress In Electromagnetics Research C, Vol. 15, 145-155, 2010
doi:10.2528/PIERC10070303

Abstract

This paper investigates the application of frequency-selective surface (FSS) in reflectarray antennas for the purpose of reducing radar cross section (RCS) level. Different from previous reports, the presented band-stop FSS structure is also characterized by the suppression of surface waves, which makes a contribution to better radiation performance. Two 14 x 14 reflectarray antennas backed on the FSS ground and a solid ground are designed and fabricated. Simulated and measured results show that the FSS ground can improve the `in- band' gain by 1.1 dB, decrease the sidelobe level by 6.4 dB, and reduce the `out-of-band' RCS effectively when compared with the antenna with a solid ground plane of the same size.

Citation


Hua Li, Bing-Zhong Wang, Gang Zheng, Wei Shao, and Lin Guo, "A Reflectarray Antenna Backed on FSS for Low RCS and High Radiation Performances," Progress In Electromagnetics Research C, Vol. 15, 145-155, 2010.
doi:10.2528/PIERC10070303
http://jpier.org/PIERC/pier.php?paper=10070303

References


    1. Pozar, D. M., S. D. Targonski, and H. D. Syrigos, "Design of millimeter wave microstrip reflecarrays," IEEE Trans. Antennas Propagat., Vol. 45, 287-296, Feb. 1997.
    doi:10.1109/8.560348

    2. Sayidmarie, K. H. and M. E. Bialkowski, "Phasing of a microstrip reflectarray using multi-dimensional scaling of its elements," Progress In Electromagnetics Research B, Vol. 2, 125-136, 2008.
    doi:10.2528/PIERB07110402

    3. Venneri, F., S. Costanzo, and G. Di Massa, "Transmission line analysis of aperture-coupled reflectarrays," Progress In Electromagnetics Research C, Vol. 4, 1-12, 2008.

    4. Venneri, F., S. Costanzo, G. Di Massa, and G. Amendola, "Aperture-coupled reflectarrays with enhanced bandwidth features," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 11-22, 1527-1537, 2008.
    doi:10.1163/156939308786390247

    5. Tahir, F. A., H. Aubert, and E. Girard, "Equivalent electrical circuit for designing MEMS-controlled reflectarray phase shifters," Progress In Electromagnetics Research, Vol. 100, 1-12, 2010.
    doi:10.2528/PIER09112506

    6. Huang, J. and J. A. Encinar, Reflectarray Antennas, John Wiley & Sons Inc., Hoboken, NJ, 2007.

    7. Collardey, S., A.-C. Tarot, P. Pouliguen, and K. Mahdjoubi, "Use of electromagnetic band-gap materials for RCS reduction," Microwave and Optical Technology Letters, Vol. 44, 546-550, Mar. 2005.
    doi:10.1002/mop.20693

    8. Bhattacharyya, A. K., "Radar cross section reduction of a flat plate by RAM coating," Microwave and Optical Technology Letters, Vol. 3, 324-327, Sep. 1990.
    doi:10.1002/mop.4650030908

    9. Li, Y., Y. Liu, and S.-X. Gong, "Microstrip antenna using groundcut slots and miniaturization techniques with low RCS," Progress In Electromagnetics Research Letters, Vol. 1, 211-220, 2008.

    10. Zheng, J.-H., Y. Liu, and S.-X. Gong, "Aperture coupled microstrip antenna with low RCS," Progress In Electromagnetics Research Letters, Vol. 3, 61-68, 2008.
    doi:10.2528/PIERL08013102

    11. Chambers, B. and A. Tennant, "General analysis of the phase-switched screen, Part 1: The single layer case," Radar Sonar and Navigation, Vol. 149, No. 5, 243-247, Oct. 2002.
    doi:10.1049/ip-rsn:20020534

    12. Zheng, Q.-R., Y.-M. Yan, X.-Y. Cao, and N.-C. Yuan, "Hign impedance ground plane (HIGP) incorporated with resistance for radar cross section (RCS) reduction of antenna," Progress In Electromagnetics Research, Vol. 84, 307-319, 2008.
    doi:10.2528/PIER08072003

    13. Misran, N., R. Cahill, and V. F. Fusco, "RCS reduction technique for reflectarray antennas," Electron. Lett., Vol. 39, 1630-1631, Nov. 2003.

    14. Moghadasi, S. M., A. R. Attari, and M. M. Mirsalehi, "Compact and wideband 1-D mushroom-like EBG filters," Progress In Electromagnetics Research, Vol. 83, 323-333, 2008.
    doi:10.2528/PIER08050101

    15. Shaban, H. F., H. A. Elmikatay, and A. A. Shaalan, "Study the effects of electromagnetic band-gap (EBG) substrate on two patches microstrip antenna," Progress In Electromagnetic Research B, Vol. 10, 55-74, 2008.
    doi:10.2528/PIERB08081901

    16. Zhang, L.-J., C.-H. Liang, L. Liang, and L. Chen, "A novel design approach for dual band electromagnetic band gap structure," Progress In Electromagnetic Research M, Vol. 4, 81-91, 2008.
    doi:10.2528/PIERM08071107

    17. Shum, K. M., Q. Xue, C. H. Chan, and K. M. Luk, "Gain enhancement of microstrip reflectarray incorporating a PBG structure," Microwave and Optical Technology Letters, Vol. 28, 114-116, Jan. 2001.
    doi:10.1002/1098-2760(20010120)28:2<114::AID-MOP11>3.0.CO;2-6

    18. Li, H., B.-Z. Wang, and P. Du, "Novel broadband reflectarray antenna with windmill-shaped elements for millimeter-wave application," Intl. Journal of Infrared & Milimetere Waves, Vol. 28, 339-344, Mar. 2007.
    doi:10.1007/s10762-007-9218-8

    19. Tsai, F.-C. E. and M. E. Bialkowski, "Designing a 161-element Ku-band microstrip reflectarray of variable size patches using an equivalent unit cell waveguide approach," IEEE Trans. Antennas Propag., Vol. 51, 2953-2962, Oct. 2003.

    20. Bialkowski, M. E. and K. H. Sayidmarie, "Bandwidth considerations for a microstrip reflectarray," Progress In Electromagnetics Research B, Vol. 3, 173-187, 2008.
    doi:10.2528/PIERB07120405

    21. Lee, C. K., R. J. Langley, and E. A. Parker, "Single layer multiband frequency selective surfaces," IEE Proceedings Part H, Vol. 132, 411-412, 1985.

    22. Bamford, L. D., J. R. James, and A. F. Fray, "Minimising mutual coupling in thick substrate microstrip antenna arrays," Electronics Lett., Vol. 33, 648-650, Apr. 1997.
    doi:10.1049/el:19970448

    23. Radisic, V., Y. Qian, and R. Coccioli, "Novel 2-D photonic bandgap structure for microstrip lines," IEEE Microwave Guided Wave Lett., Vol. 8, 69-71, Feb. 1998.
    doi:10.1109/75.658644