Vol. 15

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2010-08-01

A Novel Epsilon Near Zero (Enz) Tunneling Circuit Using Microstrip Technology for High Integrability Applications

By D. V. B. Murthy, Alonso Corona-Chavez, and Jose Luis Olvera Cervantes
Progress In Electromagnetics Research C, Vol. 15, 65-74, 2010
doi:10.2528/PIERC10060202

Abstract

A novel compact Epsilon Near Zero (ENZ) tunneling circuit with microstrip coupling for high integrability applications is presented. Full design procedure, simulation and experimental results are shown, and a methodology to extract the effective permittivity and propagation constants in the tunnel is described. Detailed analysis of the dependence on external quality factor and tunnel to feed height ratio is investigated. Simulation and measurement results of the ENZ tunnel structure are in good agreement.

Citation


D. V. B. Murthy, Alonso Corona-Chavez, and Jose Luis Olvera Cervantes, "A Novel Epsilon Near Zero (Enz) Tunneling Circuit Using Microstrip Technology for High Integrability Applications," Progress In Electromagnetics Research C, Vol. 15, 65-74, 2010.
doi:10.2528/PIERC10060202
http://jpier.org/PIERC/pier.php?paper=10060202

References


    1. Silveirinha, M. G. and N. Engheta, "Tunneling of electromagnetic energy through sub-wavelength channels and bends using epsilon-near-zero (ENZ) materials," Phys. Rev. Lett., Vol. 97, No. 15, 157403-1-157403-4, Oct. 2006.

    2. Alù, A. and N. Engheta, "Achieving transparency with plasmonic and metamaterial coatings," Phys. Rev. E, Vol. 72, No. 1, 016623-1-016623-9, Jul. 2005.

    3. Alù, A., M. G. Silverinha, A. Salandrino, and N. Engheta, "Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern," Phys. Rev. B, Vol. 75, No. 15, 155410-1-155410-13, Apr. 2007.

    4. Silveirinha, M. G. and N. Engheta, "Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε-near zero materials," Phys. Rev. B, Vol. 76, No. 24, 245109-1-245109-17, Dec. 2007.

    5. Edwards, B., A. Alù, M. E. Young, M. G. Silveirinha, and N. Engheta, "Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide," Phys. Rev. Lett., Vol. 100, No. 3, 033903-1-033903-4, Jan. 2008.
    doi:10.1103/PhysRevLett.100.033903

    6. Edwards, B., A. Alù, M. G. Silveirinha, and N. Engheta, "Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects," J. Appl. Phys., Vol. 105, No. 4, 044905-1-044905-4, Feb. 2009.
    doi:10.1063/1.3074506

    7. Alù, A. and N. Engheta, "Antenna matching in ε-near zero metamaterial channels," IEEE International Workshop on Antenna Technology, iWAT 2009, 1-4, Mar. 2-4, 2009.

    8. Alù, A. and N. Engheta, "Dielectric sensing in ε-near zero narrow waveguide channels," Phys. Rev. B, Vol. 78, No. 4, 045102-1-045102-5, Jul. 2008.

    9. Rotman, W., "Plasma simulation by artificial dielectrics and parallel-plate media," IRE Trans. Antennas Propag., Vol. 10, No. 1, 82-95, Jan. 1962.
    doi:10.1109/TAP.1962.1137809

    10. Alù, A., M. G. Silveirinha, and N. Engheta, "Transmission-line analysis of ε-near-zero-filled narrow channels," Phys. Rev. E, Vol. 78, No. 4, 016604-1-045102-10, Jul. 2008.

    11. Collin, R. E., Field Theory of Guided Waves, 2 Ed., IEEE Press, New York, 1980.

    12. Ansoft HFSS Software, version.11.

    13. Lubkowski, G., R. Schuhmann, and T. Weiland, "Extraction of e®ective metamaterial parameters by parameter fitting of dispersive models," Microwave Opt. and Technol. Lett., Vol. 49, No. 2, 285-288, Feb. 2007.
    doi:10.1002/mop.22105