Vol. 14

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

A New Dual-Polarized Gap-Fed Patch Antenna

By Sodnomtseren Ononchimeg, Jae-Hoon Bang, Bierng-Chearl Ahn, and Eun-Jong Cha
Progress In Electromagnetics Research C, Vol. 14, 79-87, 2010


In this paper, a new compact dual-polarized microstrip patch antenna is proposed. The patch is of rectangular shape and fed by a gap between the patch edge and a microstrip open end. Gap feeding at the edge of a rectangular patch antenna is proposed for the first time in this paper. This method of feeding occupies a negligible space compared to other feeding methods such as a quarter-wave transformer feeder, an inset feeder, a proximity coupler, and an aperture-coupled feeder. Dual-polarized radiation is realized by feeding a rectangular patch with two orthogonal gaps. First, a single-polarized patch is designed. The impedance matching property of the gap is analyzed using an equivalent circuit. Next, starting from dimensions of the single-polarized patch, a dual-polarized patch antenna is designed by optimizing the patch length and gap width. The designed antenna is fabricated and tested. The fabricated antenna has reflection coefficient less than -10 dB, port isolation greater than 30 dB, over 14.5-15.2 GHz, and a gain of 6.2 dBi at 14.9 GHz.


Sodnomtseren Ononchimeg, Jae-Hoon Bang, Bierng-Chearl Ahn, and Eun-Jong Cha, "A New Dual-Polarized Gap-Fed Patch Antenna," Progress In Electromagnetics Research C, Vol. 14, 79-87, 2010.


    1. Chen, W.-L. and G.-M. Wang, "Small size edge-fed Sierpinski carpet microstrip patch antenna," Progress In Electromagnetics Research C, Vol. 3, 195-202, 2008.

    2. Gosh, S., A. Roy, and A. Chakrabarty, "Estimation of antenna factor of microstrip patch antenna as EMI sensor," Progress In Electromagnetics Research Letters, Vol. 3, 113-122, 2008.

    3. Mandal, D., R. S. Kar, and A. K. Bhattacharjee, "Input impedance of rectangular microstrip antennas on non-radiating edges for different feed sizes," Progress In Electromagnetics Research C, Vol. 1, 191-198, 2008.

    4. Notis, D. T., P. C. Liakou, and D. P. Chrissoulidis, "Dual polarised microstrip patch antenna reduced in size by use of peripheral slits," Proc. 34th European Microw. Conf, Vol. 1, 125-128, 2004.

    5. Binu, P., S. Mridula, C.-K. Aanandan, K. Vasudevan, and P. Mohanan, "Electromagnetically coupled dual port dual band octagonal patch antenna," Proc. IEEE Int. Conf. Personal Wireless Comm., 305-307, 2005.

    6. Min, K.-S., S.-H. Park, D.-C. Kim, and H. Arai, "Microstrip patch antenna with dual resonance and dual polarization," Proc. Asia Pacific Microw. Conf., Vol. 1, 158-161, 1999.

    7. Simons, R. N., "Suspended rectangular/circular patch antennas with electromagnetically coupled inverted microstrip feed for dual polarization frequency," Proc. IEEE Int. Antennas Propog. Symp., Vol. 4, 2204-2207, 2000.

    8. Caso, R., A. Buffi, M. R. Pino, and R. Nepa, "A novel dual-feed slot-coupling feeding technique for circularly polarized patch arrays," IEEE Microw. Wireless Comp. Lett., Vol. 9, 183-186, 2010.

    9. Gao, X., H. Zhong, Z. Feng, and M. F. Iskander, "Low-profile planar tripolarization antenna for WLAN communications," IEEE Microw. Wireless Comp. Lett., Vol. 9, 83-86, 2010.

    10. Yu, C.-C. and K. Chang, "Transmission-line analysis of a capacitively coupled microstrip ring resonator," IEEE Trans. Microw. Theory Tech., Vol. 45, No. 11, 2018-2024, 1997.

    11. Jung, W., Y. Woo, and C. Ha, "Modified inset fed microstrip patch antenna," Proc. Asia Pacific Microw. Conf., Vol. 3, 1346-1349, 2001.

    12. Koster, N. H. L. and R. H. Jansen, "The equivalent circuit of the asymmetric series gap in microstrip and suspended substrate lines," IEEE Trans. Microw. Theory Tech., Vol. 30, 1273-1279, 1982.

    13. Kirschning, M., R. H. Jansen, and N. H. L. Koster, "Measurement and computer-aided modeling of microstrip discontinuities by an improved resonator method," Proc. IEEE Int. MTT-S Symp., Vol. 83, 495-497, 1983.

    14. Balanis, C. A., Antenna Theory: Analysis and Design, 811-862, Wiley, New York, 2005.

    15. Hoffmann, R. K., Handbook of Microwave Integrated Citcuits, 185-186, Artech House, Boston, 1987.

    16. Edwards, T., Foundations for Microstrip Circuit Design, 2nd Ed., 107-108, John Wiley, New York, 1992.