Vol. 13

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2010-05-14

High Impedance Surfaces Based Antennas for High Data Rate Communications at 40 GHz

By Cuong-Manh Tran, Habiba Hafdallah-Ouslimani, Luyang Zhou, Alain C. Priou, Herve Teillet, Jean-Yves Daden, and Abdelwaheb Ourir
Progress In Electromagnetics Research C, Vol. 13, 217-229, 2010
doi:10.2528/PIERC10040404

Abstract

Millimeter wave High Impedance Surfaces (HIS) based antennas are designed, fabricated, and characterized for high data rate communications at frequencies around 40 GHz. HIS with different finite surface area sizes are used as a ground plane for the microstrip patch antennas to suppress the surface waves. The antenna measurements and full wave electromagnetic simulations demonstrate a wide bandwidth of 12-15% in the frequency range of 38-44 GHz with a high gain of ~6 dB and a very low cross polar contribution better than -20 dB.

Citation


Cuong-Manh Tran, Habiba Hafdallah-Ouslimani, Luyang Zhou, Alain C. Priou, Herve Teillet, Jean-Yves Daden, and Abdelwaheb Ourir, "High Impedance Surfaces Based Antennas for High Data Rate Communications at 40 GHz ," Progress In Electromagnetics Research C, Vol. 13, 217-229, 2010.
doi:10.2528/PIERC10040404
http://jpier.org/PIERC/pier.php?paper=10040404

References


    1. Costanzo, S., I. Venneri, G. Di Massa, and G. Amendola, "Hybrid array antenna for broadband millimeter-wave applications," Progress In Electromagnetics Research, Vol. 83, 173-183, 2008.
    doi:10.2528/PIER08051404

    2. Cui, B., J. Zhang, and X. W. Sun, "Single layer micro-strip antenna arrays applied in millimeter-wave radar," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 1, 3-15, 2008.
    doi:10.1163/156939308783122797

    3. Ren, Y.-J. and K. Chang, "An ultrawideband microstrip dual ring antenna for millimeter-wave applications," IEEE Antennas and Wireless Propagat. Letters, Vol. 6, 457-459, 2007.
    doi:10.1109/LAWP.2007.905012

    4. Yang, G.-M., R. Jin, J. Geng, and W. He, "Planar broadband millimeter-wave antenna based on open loop ring resonators," Microwave and Optical Technology Letters, Vol. 50, No. 2, 324-328, 2008.
    doi:10.1002/mop.23081

    5. Navarro, J., "Wide-band, low-profile millimeter-wave antenna array," Microwave and Optical Technology Letters, Vol. 34, No. 4, 253-255, 2002.
    doi:10.1002/mop.10430

    6. Jackson, D. R., J. T. Williams, A. K. Bhattacharyya, R. L. Smith, S. J. Buchheit, and S. A. Long, "Microstrip patch designs that do not excite surface waves," IEEE Transactions on Antennas and Propagation, Vol. 41, No. 8, 1026-1037, August 1993.
    doi:10.1109/8.244643

    7. Mahmoud, S. F. and A. R. Al-Ajmi, "A novel microstrip patch antenna with reduced surface wave excitation," Progress In Electromagnetics Research, Vol. 86, 71-86, 2008.
    doi:10.2528/PIER08092403

    8. Sievenpiper, D., High impedance electromagnetic surfaces, Ph.D. Thesis, UCLA, 1999.

    9. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopoulos, and E. Yablonovitch, "Artificial Magnetic conductor Surfaces with a forbidden frequency band," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2059-2074, 1999.
    doi:10.1109/22.798001

    10. Liang, L., C. H. Liang, L. Chen, and X. Chen, "A novel broadband EBG using cascaded mushroom-like structure," Microwave and Optical Technology Letters, Vol. 50, No. 8, 2170-2167, 2008.
    doi:10.1002/mop.23598

    11. Mahdi Moghadasi, S., A. R. Attari, and M. M. Mirsalehi, "Compact and wideband 1-D mushroom-like EBG filters," Progress In Electromagnetics Research, Vol. 83, 323-333, 2008.
    doi:10.2528/PIER08050101

    12. Bahrami, H., M. Hakkak, and A. Pirhadi, "Analysis and design of highly compact bandpass waveguide filter using complementary split ring resonators (CSRR)," Progress In Electromagnetics Research, Vol. 80, 107-122, 2008.

    13. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2936-2946, Oct. 2003.
    doi:10.1109/TAP.2003.817983

    14. Maslovski, S., P. Ikonen, C. Simovski, M. Karkkainen, S. Tretyakov, and V. Denchev, Improving antenna near-field pattern by use of artificial impedance screens, physics/0504123, 2005.

    15. Wu, Z.-H. and W. X. Zhang, "On profile thickness of printed compound air-fed array antenna," Journal of Electromagnetic Waves and Applications, Vol. 24, 199-207, 2010.
    doi:10.1163/156939310790735688

    16. Sohn, J. R., K. Y. Kim, H.-S. Tae, and J. -H. Lee, "Comparative study on various artificial magnetic conductors for low-profile antenna ," Progress In Electromagnetics Research, Vol. 61, 27-37, 2006.
    doi:10.2528/PIER06011701

    17. Yang, F. and Y. Rahmat-Samii, "Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2939-2949, 2003.

    18. Tretyakov, S. A. and C. R. Simovski, "Wire antennas near artificial impedance surfaces," Microwave and Optical Technology Letters, Vol. 27, No. 1, 46-50, 2000.
    doi:10.1002/1098-2760(20001005)27:1<46::AID-MOP13>3.0.CO;2-9