Vol. 11

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2009-10-07

Digital Amplitude Control for Interference Suppression Using Immunity Genetic Algorithm

By Zoubir Hamici and Taisir Ismail
Progress In Electromagnetics Research C, Vol. 11, 21-38, 2009
doi:10.2528/PIERC09082905

Abstract

In this paper, we propose a novel genetic algorithm (GA) called immunity GA (IGA) for array pattern synthesis with interference suppression using digital amplitude only control. The IGA is based on crossover evolution where the crossover operator is a variant of the known GA operator. A new formulation of the array factor transform for a specific number of elements N is expressed by a discrete cosine transform (DCT) with pre-computed DCT matrix. Evaluating thousands of candidate solutions generated by the IGA using the precomputed DCT matrix will result in a high speed computation. This high performance allows us to find a good approximation of the absolute minimum SLL of synthesized arrays with digital amplitude control. Simulation results show the effectiveness of this new algorithm for pattern synthesis with low SLL and null steering.

Citation


Zoubir Hamici and Taisir Ismail, "Digital Amplitude Control for Interference Suppression Using Immunity Genetic Algorithm," Progress In Electromagnetics Research C, Vol. 11, 21-38, 2009.
doi:10.2528/PIERC09082905
http://jpier.org/PIERC/pier.php?paper=09082905

References


    1. Bevelacqua, P. J. and C. A. Balanis, "Minimum sidelobe levels for linear arrays," IEEE Trans. Antennas Propagt., Vol. 55, 3442-3449, Dec. 2007.
    doi:10.1109/TAP.2007.910490

    2. Khodier, M. M. and C. G. Christodoulou, "Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization," IEEE Trans. Antennas Propagt., Vol. 53, No. 8, 2674-2679, Aug. 2005.
    doi:10.1109/TAP.2005.851762

    3. Donelli, M., R. Azaro, F. De Natale, and A. Massa, "An innovative computational approach based on a particle swarm strategy for adaptive phased-arrays control," IEEE Trans. Antennas Propagt., Vol. 54, No. 3, Mar. 2006.

    4. Guney, K. and S. Basbug, "Interference suppression of linear antenna arrays by amplitude-only control using a bacterial foraging algorithm," Progress In Electromagnetics Research, Vol. 79, 475-497, 2008.
    doi:10.2528/PIER07110705

    5. Haupt, R. L., "Thinned arrays using genetic algorithms," IEEE Trans. Antennas Propagt., Vol. 42, 993-999, Jul. 1994.

    6. Mahanti, G. K., N. Pathak, P. Mahanti, and , "Synthesis of thinned linear antenna arrays with fixed sidelobe level using real-coded genetic algorithm," Progress In Electromagnetics Research, Vol. 75, 319-328, 2007.
    doi:10.2528/PIER07061304

    7. Buckley, M. J., "Linear array synthesis using a hybrid genetic algorithm," Proc. IEEE Ant. Propagat. Soc. Int. Symp., 584-587, Baltimore, MD, Jul. 1996.

    8. Ruf, C. S., "Numerical annealing low-redundancy linear arrays," IEEE Trans. Antennas Propagt., Vol. 41, 85-90, Jan. 1993.
    doi:10.1109/8.210119

    9. Murino, V., A. Trucco, and C. Regazzoni, "Synthesis of unequally spaced arrays by simulated annealing," IEEE Trans. on Signal Processing, Vol. 44, No. 1, 119-123, 1996.
    doi:10.1109/78.482017

    10. Mulholland, J. E., F. N. DiMeo, A. Hoorfar, and K. Goverdhanam, "The optimization of thinned phased arrays by the use of neural networks," 10th Annual Benjamin Franklin Symposium, Philadelphia, PA, May 2, 1992.

    11. Rattan, M., M. S. Patterh, and B. S. Sohi, "Antenna array optimization using evolutionary approaches," Apeiron, Vol. 15, No. 1, 78, Jan. 2008.

    12. Razavi, A. and K. Forooraghi, "Thinned arrays using pattern search algorithms," Progress In Electromagnetics Research, Vol. 78, 61-71, 2008.
    doi:10.2528/PIER07081501

    13. Rocha-Alicanoa, C., D. Covarrubias-Rosalesa, C. Brizuela-Rodrigueza, and M. Panduro-Mendozab, "Differential evolution algorithm applied to sidelobe level reduction on a planar array," Int. J. Electron. Commun. (AEU), Vol. 61, 286-290, 2007.
    doi:10.1016/j.aeue.2006.05.008