Vol. 9

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2009-08-19

Design and Optimization of Compact Balanced Antipodal Vivaldi Antenna

By Farid Jolani, Gholamreza R. Dadashzadeh, Mohammad Naser-Moghadasi, and Abdolmehdi Dadgarpour
Progress In Electromagnetics Research C, Vol. 9, 183-192, 2009
doi:10.2528/PIERC09071510

Abstract

In this paper, the conformal finite-difference time-domain (CFDTD) method using PSO optimization is applied to design a compact directive balanced antipodal Vivaldi antenna for ultra-wideband (UWB) applications. This paper demonstrates miniaturized antipodal Vivaldi antenna (32 × 35 × 1.6 mm3), having low-cross polarization levels and reasonable gain from 3.1 to 10.6 GHz. The antenna peak gain is 5.25 dBi in the specified band. The simulated and experimental results of return loss, far field patterns and gain are presented.

Citation


Farid Jolani, Gholamreza R. Dadashzadeh, Mohammad Naser-Moghadasi, and Abdolmehdi Dadgarpour, "Design and Optimization of Compact Balanced Antipodal Vivaldi Antenna," Progress In Electromagnetics Research C, Vol. 9, 183-192, 2009.
doi:10.2528/PIERC09071510
http://jpier.org/PIERC/pier.php?paper=09071510

References


    1. Mehdipour, A., K. M. Aghdam, and R. Faraji-Dana, "Complete dispersion analysis of Vivaldi antenna for ultra wideband applications," Progress In Electromagnetics Research, Vol. 77, 85-96, 2007.
    doi:10.2528/PIER07072904

    2. Lin, S., S. Yang, and A. E. Fathy, "Development of a novel UWB vivaldi antenna array using SIW Technology," Progress In Electromagnetics Research, Vol. 90, 369-384, 2009.
    doi:10.2528/PIER09020503

    3. Greenberg, M. C., K. L. Virga, and C. L. Hammond, "Performance characteristic of the dual exponentially tapered slot antenna (DETSA) for wireless communications applications," IEEE Trans. Veh. Technol., Vol. 42, No. 2, 30-312, 2003.

    4. Nikolaou, S., L. Marcaccioli, G. E. Ponchak, J. Papapolymerou, and M. M. Tentzeris, "Conformal double exponentially tapered slot antennas (DETSA) for UWB communication systems' front ends," IEEE-ICU Int. Conf. Ultrawideband Technol., 2005.

    5. Abbosh, A. M., H. K. Kan, and M. E. Bialkowski, "Design of compact directive ultra wideband antipodal antenna," Microwave and Opt. Tech. Lett., Vol. 84, No. 12, 2006.

    6. Hood, A. Z., T. Karacolak, and E. Topsakal, "A small antipodal vivaldi antenna for ultrawide-band applications," IEEE Antennas and Wireless Propagat. Lett., Vol. 7, 656-660, 2008.
    doi:10.1109/LAWP.2008.921352

    7. Yu, W. and R. Mittra, "Accurate modeling of planar microwave circuit using conformal FDTD algorithm," Electronics Lett., Vol. 36, 618-619, 2000.
    doi:10.1049/el:20000495

    8. Hu, W. J. and D. B. Ge, "Study on conformal FDTD for electromagnetic scattering by targets with thin coating," Progress In Electromagnetics Research, Vol. 79, 305-319, 2008.
    doi:10.2528/PIER07101902

    9. Jin, N. and Y. Rahmat-Samii, "Parallel particle swarm optimization and finite-difference time-domain (PSO/FDTD) algorithm for multiband and wide-band patch antenna design," IEEE Trans. Antenna and Propagat., Vol. 53, No. 11, 3459-3468, 2005.
    doi:10.1109/TAP.2005.858842

    10. Semnani, A. and M. K. Hesari, "An enhanced method for inverse scattering problems using fourier series expansion in conjunction with FDTD and PSO," Progress In Electromagnetics Research, Vol. 76, 45-64, 2007.
    doi:10.2528/PIER07061204

    11. Wang, W. T., S. X. Gong, Y. J. Zhang, F. T. Zha, and J. Ling, "Low RCS dipole array synthesis based on MOM-PSO hybrid algorithm," Progress In Electromagnetics Research, Vol. 94, 119-132, 2009.

    12. Edwards, T. C. and M. B. Steer, Foundation of Interconnected and Microstrip Design, 3rd Ed., John Wiley & Sons, 2000.

    13. Roden, J. A. and S. D. Gedney, "Convolutional PML (CPML): An efficient FDTD implementation of the CSF-PML for arbitrary media," Microwave Opt. Tech. Lett., Vol. 27, No. 5, 334-339, 2000.
    doi:10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A

    14. Zhang, Y. P., "Finite-difference time-domain analysis of integrated ceramic ball grid array package antenna for highly integrated wireless transceivers," IEEE Trans. Antenna and Propagat., Vol. 52, No. 2, 43-442, 2004.

    15. Xu, S. and Y. Rahmat-Samii, "Boundary condition in particle swarm optimization revisited," IEEE Trans. Antenna and Propagat., Vol. 55, No. 3, 760-765, 2007.
    doi:10.1109/TAP.2007.891562