Vol. 4

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2008-06-26

Transmission Line Analysis of Aperture-Coupled Reflectarrays

By Francesca Venneri, Sandra Costanzo, and Giuseppe Di Massa
Progress In Electromagnetics Research C, Vol. 4, 1-12, 2008

Abstract

A fast analysis of aperture-coupled reflectarrays is presented in this work in terms of transmission line model. The circuital approach is adopted to derive the phase design curve as a function of the current flowing on the equivalent impedance of the single radiating element. Computational costs are drastically reduced with respect to standard full-wave methods. Numerical and experimental validations are discussed on slot-coupled reflectarray configurations working at different operating frequencies.

Citation


Francesca Venneri, Sandra Costanzo, and Giuseppe Di Massa, "Transmission Line Analysis of Aperture-Coupled Reflectarrays," Progress In Electromagnetics Research C, Vol. 4, 1-12, 2008.
http://jpier.org/PIERC/pier.php?paper=08051605

References


    1. Sayidmarie, K. and H. Bialkowski, "Phasing of a microstrip reflectarray using multi-dimensional scaling of its elements," Progress In Electromagnetics Research B, Vol. 2, 125-136, 2008.
    doi:10.2528/PIERB07110402

    2. Bialkowski, M. E. and K. H. Sayidmarie, "Bandwidth considerations for a microstrip reflectarray," Progress In Electromagnetics Research B, Vol. 3, 173-187, 2008.
    doi:10.2528/PIERB07120405

    3. Huang, J., "Microstrip reflectarray," Proc. of IEEE AP-S Int. Symp., 612-615, London (Ontario), Canada, 1991.

    4. Pozar, D. M., S. D. Targonski, and H. D. Syrigos, "Design of millimeter wave microstrip reflectarrays," IEEE Trans. Antennas Propag., Vol. 45, No. 2, 287-296, 1997.
    doi:10.1109/8.560348

    5. Encinar, J. A., "Design of two-layer printed reflectarrays using patches of variable size," IEEE Trans. Antennas Propag., Vol. 49, No. 10, 1403-1410, 2001.
    doi:10.1109/8.954929

    6. Encinar, J. A. and J. A. Zornoza, "Broadband design of three-layer printed reflectarrays," IEEE Trans. Antennas Propag., Vol. 51, No. 7, 1662-1664, 2003.
    doi:10.1109/TAP.2003.813611

    7. Huang, J., "A Ka-band microstrip reflectarray with elements having variable rotation angles," IEEE Trans. Antennas Propag., Vol. 46, No. 5, 650-656, 1998.
    doi:10.1109/8.668907

    8. Li, H., B.-Z. Wang, and W. Shao, "Novel broadband reflectarray antenna with compound-cross-loop elements for millimeter-wave application," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 10, 1333-1340, 2007.
    doi:10.1163/156939307783239528

    9. Bialkowski, M. E. and H. J. Song, "Investigations into a power-combining structure using a reflectarray of dual feed aperture-coupled microstrip patch antennas," IEEE Trans. Antennas Propag., Vol. 50, No. 6, 841-849, 2002.
    doi:10.1109/TAP.2002.1017666

    10. Carrasco, E., B. Alfageme, and J. A. Encinar, "Design of a multilayer aperture-coupled cell used as phase shifter in reflectarrays," Proc. of Jina 2004, Nice, France, 2004.

    11. Costanzo, S., F. Venneri, and G. Di Massa, "Bandwidth enhancement of aperture-coupled reflectarrays," IEE Electronics Letters, Vol. 42, No. 23, 1320-1321, 2006.
    doi:10.1049/el:20062492

    12. Huang, J., "Analysis of a microstrip reflectarray antenna for microspacecraft applications," TDA Progress Report, 153-173, 1995.

    13. Hatamzadeh-Varmazyar, S. and M. Naser-Moghadasi, "An integral equation modelling of electromagnetic scattering from the surfaces of arbitrary resistance distribution," Progress In Electromagnetics Research B, Vol. 3, 157-172, 2008.
    doi:10.2528/PIERB07121404

    14. Du, P., B.-Z. Wang, H. Li, and G. Zheng, "Scattering analysis of large-scale periodic structures using the sub-entire domain basis function method and characteristic function method," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 2085-2094, 2007.
    doi:10.1163/156939307783152957

    15. Carpentieri, B., "Fast large RCS calculation using the boundary element method," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 1959-1968, 2007.
    doi:10.1163/156939307783152768

    16. Lu, W. B. and T. J. Cui, "Efficient method for full-wave analysis of large-scale finite-sized periodic structures," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 2157-2168, 2007.
    doi:10.1163/156939307783152812

    17. Hassani, H. R. and M. Jahanbakht, "Method of moment analysis of finite phased array of aperture coupled circular microstrip patch antennas," Progress In Electromagnetics Research B, Vol. 4, 197-210, 2008.
    doi:10.2528/PIERB08010602

    18. MIttra, R. and K. Du, "Characteristic basis function method for iteration-free solution of large method of moments problems," Progress In Electromagnetics Research B, Vol. 6, 307-336, 2008.
    doi:10.2528/PIERB08031206

    19. Huang, E. X. and A. K. Fung, "An application of sampling theorem to moment method simulation in surface scattering," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 4, 531-546, 2006.
    doi:10.1163/156939306776117063

    20. Venneri, F., G. Angiulli, and G. Di Massa, "Design of microstrip reflectarray using data from isolated patch," Microwave and Optical Technology Letters, Vol. 34, No. 6, 411-414, 2002.
    doi:10.1002/mop.10479

    21. Zheng, J. H., Y. Liu, and S.-X. Gong, "Aperture coupled microstrip antenna with low RCS," Progress In Electromagnetics Research Letters, Vol. 3, 61-68, 2008.
    doi:10.2528/PIERL08013102

    22. Venneri, F., S. Costanzo, G. Di Massa, and G. Amendola, "Aperture-coupled reflectarrays with enhanced bandwidth features," Journal of Electromagnetic Waves and Applications, Vol. 22, 1527-1537, 2008.
    doi:10.1163/156939308786390247

    23. Pue, H. and A. Van de Capelle, "Accurate transmission line model for the rectangular microstrip antenna," IEE Proc. H, Vol. 131, No. 6, 334-340, 1984.

    24. Kim, J. P. and W. S. Park, "Analysis and network modeling of an aperture-coupled microstrip patch antenna," IEEE Trans. Antennas Propag., Vol. 49, No. 6, 849-854, 2001.
    doi:10.1109/8.931141

    25. Kim, J. P. and W. S. Park, "An improved network modeling of slot-coupled microstrip lines," IEEE Trans. Microwave Theory and Techniques, Vol. 46, No. 10, 1484-1491, 1998.
    doi:10.1109/22.721151

    26. Gupta, K. C., R. Garg, I. Bahl, and P. Bhartia, Microstrip Lines and Slot Lines, Artech House, Norwood, MA, 1996.

    27. Svacina, J., "Dispersion characteristics of multilayered slotlines — A simple approach," IEEE Trans. Microwave Theory and Techniques, Vol. 47, No. 9, 1826-1829, 1999.
    doi:10.1109/22.788518

    28. Pozar, D. M., "A reciprocity method of analysis for printed slot and slot-coupled microstrip antenna," IEEE Trans. Antennas Propag., Vol. 34, No. 12, 1439-1446, 1986.
    doi:10.1109/TAP.1986.1143785

    29. Itoh, T., "Spectral domain immittance approach for dispersion characteristics of generalized printed transmission lines," IEEE Trans. Microwave Theory and Techniques, Vol. 28, No. 7, 733-736, 1980.
    doi:10.1109/TMTT.1980.1130158

    30. Kobayashi, M., "Longitudinal and transverse current distributions on microstriplines and their closed-form expression," IEEE Trans. Microwave Theory and Techniques, Vol. 33, No. 9, 784-788, 1985.
    doi:10.1109/TMTT.1985.1133127

    31. Venneri, F., G. Angiulli, and G. Di Massa, "Experimental evaluation of the phase of the field scattered by microstrip patches for reflectarray design," Microwave and Optical Technology Letters, Vol. 34, No. 3, 163-164, 2002.
    doi:10.1002/mop.10403