Vol. 3
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2008-04-24
An Estimate of Interference Effect on Horizontally Polarized Signal Transmission in the Tropical Locations: a Comparison of Rain-Cell Models
By
Progress In Electromagnetics Research C, Vol. 3, 67-79, 2008
Abstract
With the recent growth in the use of satellites for an increasing range of devices, services, applications and users, there is a need to optimize the signal received for availability, reliability and tolerance to interference. A lot of prediction models have been used in recent times to estimate intersystem interference due to hydrometeor scattering on vertically polarized microwave signals into the receiver of earth-space communications systems operating at the same frequency. The horizontal polarization is usually not investigated because coupling between the transmitting and receiving systems is much less than in vertical polarization. Much as this is true in the temperate regions, the nature and characteristics of tropical rainfall which are quite distinct from the temperate rainfall, means that the horizontal polarization when transmitted should be investigated for hydrometeor induced interference in tropical regions. This present work computes transmission loss on horizontally polarized signals based on two models (Awaka and Capsoni). The results obtained are compared and it is observed that there is only a difference of 1 dB in the transmission loss between the models. However, at higher frequency (>20 GHz), the Capsoni model does not produce values for the transmission loss L, while Awaka model predict a low interference at various antenna gain for percentages of time >0.1%.
Citation
Joseph Ojo, and Christianah Joseph-Ojo, "An Estimate of Interference Effect on Horizontally Polarized Signal Transmission in the Tropical Locations: a Comparison of Rain-Cell Models," Progress In Electromagnetics Research C, Vol. 3, 67-79, 2008.
doi:10.2528/PIERC08022601
References

1 . Adimula, I. O. and G. O. Ajayi, "Variation in raindrop size distribution an specific interference between terrestrial and satellite radio links," Ann. Telecomm., Vol. 51, No. 1–2, 78-93, 1996.

2. Ajayi, G. O. and R. L. Olsen, "Modeling of a topical raindrop size distribution for microwave and millimeter wave applications," Radio Sci., Vol. 20, No. 20, 193-202, 1985.
doi:10.1029/RS020i002p00193

3. Ajayi, G. O. and I. E. Owolabi, "Rainfall parameters from distrometer dropsize measurements at a tropical station," Ann. Telecomm., Vol. 42, No. 1–2, 4-12, 1987.

4. Ajewole, M. O. and J. S. Ojo, "Comparative study of bistatic intersystem interference in low latitude tropical location," Journal of Research in Science and Management, Vol. 3, No. 1, 41-49, 2005.

5. Ajewole, M. O., L. B. Kolawole, and G. O. Ajayi, "Evaluation of bistatic intersystem interference due to scattering by hydrometeors on tropical paths," Int. J. Satell. Commun., Vol. 17, 339-356, 1999.
doi:10.1002/(SICI)1099-1247(199909/10)17:5<339::AID-SAT643>3.0.CO;2-A

6. Ajewole, M. O. and J. S. Ojo, "Intersystem interference due to hydrometeor scattering on satellite downlink signal in tropical locations ," African Journal of Science and Technology UNESCO(AJST), Vol. 6, No. 2, 84-93, 2005.

7. Ajewole, M. O., "Bistatic interference due to tropical rainfall types: A comparison of rain-cell models," Atti Delta Fondazione Giorgio Ronchi, Vol. 58, No. 1, 129-141, 2003.

8. Ajewole, M. O., L. B. Kolawole, and G. O. Ajayi, "Theoretical study of the effect of different types of tropical rainfall on μ wave and millimeter propagation," Radio Sci., Vol. 34, No. 5, 1103-1124, 1999.
doi:10.1029/1999RS900063

9. Awaka, J., "A 3D rain cell model for the study of interference due to hydrometeor scattering ," J. Comm. Res. Lab., Vol. 36, No. 147, 13-44, 1989.

10. Capsoni, C. and M. D’Amico, "A physically based simple prediction method for scattering interference," Radio Sci., Vol. 32, No. 20, 397-407, 1997.
doi:10.1029/96RS03211

11. Capsoni, C., F. Fedi, C. Magistroni, A. Paraboni, and A. Pawlina, "Data and theory for a new model of the horizontal structure of rain cells for propagation applications ," Radio Sci., Vol. 22, No. 3, 395-404, 1987.
doi:10.1029/RS022i003p00395

12. Capsoni, C. D., M. Amico, A. Martellucci, L. Oladano, and A. Paraboni, "A 3D prediction method of scattering interference complete versus pencil beam approximation," Proc. URSI Comm. F Open Symp. on Wave Propagation and Remote Sensing, 8-11, Ravenscar, England, 1992.

13. Commission of the European Communities on Cooperation in the Fields of Scientific and Technical Research, COST Project 210 campaign, Final Rept. EUR 13407EN-C, Brussels, , 1991.

14. "Prediction procedure for the evaluation of microwave interference between stations on the surface of the earth at frequencies above 0.7 GHz ,", Vol. 5, 565-591, ITU Geneva, CCIR Report 569-4, 1990.

15. Crane, R., "Bistatic scatter from rain," IEEE Trans. Antenna and Propagat., Vol. 22, No. 2, 312-320, 1974.
doi:10.1109/TAP.1974.1140766

16. Holts, H. R., D. G. McGuinness, P. T. Charlton, and M. J. Mchler, "The development of a model to estimate the bistatic transmission loss associated with intersystem interference ," IEEE Trans. Antennas and Propagat.,, Vol. 41, No. 10, 1431-1442, 1993.

17. Water Vapour Surface Density and Total Columnar Content, 836-1, ITU-R, Geneva, 1997.

18. McCarthy, D. K., J. E. Allnut, W. E. Salazar, E. C. Omeata, B. R. Owolabi, T. Oladiran, E. B. Ojeba, G. O. Ajayi, T. I. Raji, and C. Zaks, "Results of 11.6 GHz radiometric experiment in Nigeria," Electron. Lett., Vol. 30, No. 17, 1452-1453, 1994.
doi:10.1049/el:19940953

19. Olsen, R. L., D. V. Rogers, R. A. Hulays, and M. Z. Kharadly, "Interference due to hydrometeor scatter on satellite communication links," Proceedings of the IEEE, Vol. 81, No. 6, 914-922, 1993.
doi:10.1109/5.257688

20. Ojo, J. S., "Bistatic interference due to hydrometer scattering : A comparative study of the tropical region,", M tech thesis, Federal University of Technology, Akure, Ondo State, Nigeria, 2004.

21. Ray, R. S., "Broadband complex refractive indices of ice and water," Applied Optics, Vol. 11, No. 8, 1811-1836, 1972.
doi:10.1364/AO.11.001836

22. Sitorus, S. P. and I. A. Glover, "Rapid hydrometeor bistatic scatter calculations using non-orthogonal function expansion," Int. J. Satell. Commun., Vol. 18, 207-218, 2000.
doi:10.1002/1099-1247(200005/06)18:3<207::AID-SAT683>3.0.CO;2-I