Vol. 2

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2008-04-09

COLD Plasma Injection on VLF Wave Mode for Relativistic Magnetoplasma with a.C. Electric Field

By Rama Pandey and R. Pandey
Progress In Electromagnetics Research C, Vol. 2, 217-232, 2008
doi:10.2528/PIERC08022501

Abstract

The effect of cold plasma beam on electromagnetic whistler wave with perpendicular AC electric field has been studied by using the unperturbed Lorentzian (Kappa) distribution in the Earth's atmosphere for relativistic plasma. The cold plasma has been described by a simple Maxwellian distribution where as Lorentzian (Kappa) distribution function has been derived for relativistic plasma with temperature anisotropy in the presence of a perpendicular AC electric field to form a hot/warm background. The dispersion relation is obtained by using the method of characteristic solutions and kinetic approach. An expression for the growth rate of a system with added cold plasma injection has been calculated. Results for representative values of parameters suited to the Earth's magnetosphere has been obtained. It is inferred that in addition to the other factors, the relativistic plasma modifies the growth rate and it also shifts the wave band significantly. The relativistic electrons by increasing the growth rate and widening the bandwidth may explain a wide frequency range of whistler emissions in the Earth's magnetosphere.

Citation


Rama Pandey and R. Pandey, "COLD Plasma Injection on VLF Wave Mode for Relativistic Magnetoplasma with a.C. Electric Field," Progress In Electromagnetics Research C, Vol. 2, 217-232, 2008.
doi:10.2528/PIERC08022501
http://jpier.org/PIERC/pier.php?paper=08022501

References


    1. Heppner, J. P., M. Sugiura, T. L. Skillman, B. G. Ledley, and M. Campbell, "OGO A magnetic field observations," J. Geophys Res., Vol. 72, 5417, 1967.
    doi:10.1029/JZ072i021p05417

    2. Fairfield, D. H., "Whistler waves observed upstream from collision less shocks," J. Geophys. Res., Vol. 79, 1368, 1974.
    doi:10.1029/JA079i010p01368

    3. Gurgiolo, C., K. K. Wong, and D. Winske, "Low and high frequency waves generated by gyrophase bunched ions at oblique shocks," Geophys. Res. Lett., Vol. 20, 783, 1993.
    doi:10.1029/93GL00854

    4. Hoppe, M. M. and C. T. Russell, "Whistler mode wave packets in the Earth's foreshock region," Nature, Vol. 287, 417, 1980.
    doi:10.1038/287417a0

    5. Hoppe, M. M., C. T. Russell, T. E. Eastman, and E. W. Green-stadt, "Characteristics of the VLF waves associated with upstream ion beams," J. Geophys. Res., Vol. 87, 643, 1982.
    doi:10.1029/JA087iA02p00643

    6. Tsurutani, B. T., R. M. Thorne, E. J. Smith, J. T. Gosling, and H. Matsumoto, "Steepend magnetospheric waves at comet Giacolaini-Zinner," J. Geophys Res., Vol. 92, 11,074, 1987.
    doi:10.1029/JA092iA10p11074

    7. Kennel, C. F. and H. E. Petschek, "Limit on Stably trapped particle fluxes," J. Geophys. Res., Vol. 71, 1, 1966.

    8. Anderson, R. R., G. K. Parks, T. E. Eastman, D. A. Gurnett, and L. A. Frank, "Plasma waves associated with energetic particles streaming into the solar wind from the Earth's bow shock," J. Geophys. Res., Vol. 86, 4493, 1981.
    doi:10.1029/JA086iA06p04493

    9. Greenstadt, E. W., R. W. Fredericks, C. T. Russel, F. L. Scarf, R. R. Anderson, and D. A. Gurnett, "Whistler mode wave propagation in the solar wind near the bow shock," J. Geophys, Res., Vol. 86, 4511, 1981.
    doi:10.1029/JA086iA06p04511

    10. Toker, R. L., D. A. Gurnett, and W. C. Feldman, "Whistler mode turbulence generated by electron beams in Earth's bow shock," J. Geophys. Res., Vol. 89, 105, 1984.
    doi:10.1029/JA089iA01p00105

    11. Tokar, R. L. and D. A. Gurnett, "The propagation and growth of whistler mode wave generated by electron beam in Earth's bow shock," J. Geophys. Res., Vol. 90, 105, 1985.
    doi:10.1029/JA090iA01p00105

    12. Feldman, W. C., R. C. Anderson, S. J. Bame, S. P. Gary, J. T. Gosling, D. J. McComas, M. F. Thomson, G. Paschmann, and M. M. Hoppe, "Electron velocity distributions near the Earth's bow shock," J. Geophys. Res., Vol. 88, 96, 1983.
    doi:10.1029/JA088iA01p00096

    13. Kennel, C. F., F. L. Scarf, F. V. Coroniti, R. W. Fredericks, D. A. Gurnnett, and E. J. Smith, "Correlated whistler and electron plasma oscillation burst detected on ISEE 3," Geophys. Res. Lett., Vol. 7, 129, 1980.
    doi:10.1029/GL007i002p00129

    14. Gary, S. P. and W. C. Feldman, "Solar wind heat flux regulation by the whistler instability," J. Geophys Res., Vol. 82, 1087, 1977.
    doi:10.1029/JA082i007p01087

    15. Orlowski, D. S., G. K. Crawford, and C. T. Russel, "Upstream waves at mercury, venus and earth, comparisons of the properties of one Hertz waves," Geophys Res. Lett., Vol. 17, 2293, 1990.
    doi:10.1029/GL017i013p02293

    16. Mozer, F. S., R. B. Torbert, U. V. Fahleson, C. Falthammar, A. Gonfalone, A. Pedersen, and C. T. Russel, "Electric field measurements in the solar wind bow shock, magnetosheath, magnetopause and magnetosphere," Space Sci. Rev., Vol. 22, 791, 1978.
    doi:10.1007/BF00212624

    17. Wygant, J. R., M. Bensadoun, and F. S. Mozer, "Electric field measurements at sub critical, oblique bow shock crossings," J. Geophys. Res., Vol. 92, 11, 109, 1987.
    doi:10.1029/JA092iA10p11109

    18. Lindquist, P. A. and F. S. Mozer, "The average tangential electric field at the noon magnetopause," J. Geophys. Res., Vol. 95, 17, 137, 1990.

    19. Misra, K. D. and R. S. Pandey, "Generation of whistler emissions by injection of hot electrons in the presence of a perpendicular A.C. electric field," J. Geophys. Res., Vol. 100, 19405, 1995.
    doi:10.1029/95JA01083

    20. Misra, K. D. and B. D. Singh, "On the modification of whistler mode instability in the magnetosphere in the presence of parallel electric field by cold plasma injection," J. Geophys. Res., Vol. 85, 5138, 1980.
    doi:10.1029/JA085iA10p05138

    21. Pandey, R. P., S. M. Karim, K. M. Singh, and R. S. Pandey, "Effect of cold plasma injection on whistler mode instability triggered by perpendicular AC electric field at Uranus," Earth Moon and Planets, Vol. 91, 195, 2002.
    doi:10.1023/A:1026240104646

    22. Pandey, R. P., R. S. Pandey, and K. D. Misra, "Temporal evolution of whistler instability due to cold plasma injection in the presence of perpendicular AC electric field in the Magnetosphere of Uranus," Earth Moon and Planets, Vol. 91, 209, 2002.
    doi:10.1023/A:1026214221484

    23. Tripathi, A. K. and K. D. Misra, "Whistler mode instability in a Lorentzian (κ) magnetoplasma in the presence of Perpendicular A.C. electric field and cold plasma injection," Earth, Moon and Planets, Vol. 88, 131, 2002.
    doi:10.1023/A:1016576801323

    24. Pandey, R. P., K. M. Singh, and R. S. Pandey, "A theoretical study of the whistler mode instability at the Uranian Bow Shock," Earth, Moon and Planets, Vol. 87, 59, 2001.
    doi:10.1023/A:1017568822606

    25. Tripathi, A. K. and K. D. Misra, "Computer analysis of whistler mode instability in the presence of perpendicular AC electric field or a Lorentzian (Kappa) magnetoplasma," Ind. J. Radio & Space Phys., Vol. 30, 279, 2001.