Vol. 1

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2008-02-07

A New Mathematical Proposal for Generation of Shape Invariant Potentials and Optical Medium Using Supersymmetric Quantum Mechanics

By Hossein Motavali and Ali Rostami
Progress In Electromagnetics Research C, Vol. 1, 131-141, 2008
doi:10.2528/PIERC08012602

Abstract

A new mathematical method and proposal for generation of shape invariant potentials using supersymmetric quantum mechanics is introduced. For this purpose the potential term in the Schrodinger equation is expressed in terms of the super potential. The obtained equation transformed into well known ordinary second order differential equation. Using standard technique, the Nikiforov-Uvarov (NU) method the superpotential in the Schrodinger equation is expressed in terms of the parameters appeared in the NU-approach concluding to a nonlinear differential equation. By solving the obtained equation and using relation between superpotential and potential the shape invariant potentials are obtained. The proposed method is general and straightforward for introducing of the shape invariant potentials.

Citation


Hossein Motavali and Ali Rostami, "A New Mathematical Proposal for Generation of Shape Invariant Potentials and Optical Medium Using Supersymmetric Quantum Mechanics," Progress In Electromagnetics Research C, Vol. 1, 131-141, 2008.
doi:10.2528/PIERC08012602
http://jpier.org/PIERC/pier.php?paper=08012602

References


    1. Fayet, P. and S. Ferrara, Supersymmetry in Physics, North-Holland, Amsterdam, 1985.

    2. Witten, E., Nucl. Phys. B, Vol. 188, 513, 1981.
    doi:10.1016/0550-3213(81)90006-7

    3. Cooper, F., A. Khare, and U. Sukhatme, Supersymmetry in Quantum Mechanics, World Scientific, Singapore, 2001.

    4. Gel'fand, Y. A. and E. P. Likhtman, JETP Lett., Vol. 13, 323, 1971.

    5. Ramond, P., Phys. Rev. D, Vol. 3, 2415, 1971.
    doi:10.1103/PhysRevD.3.2415

    6. Volkov, D. and V. Akulov, Phys. Lett. B, Vol. 46, 109, 1973.

    7. Wess, J. and B. Zumino, Nucl. Phys., Vol. 70, 39, 1974.
    doi:10.1016/0550-3213(74)90355-1

    8. Fayet, P. and S. Ferrara, Phys. Rep., Vol. 32, 249, 1977; M. F. Sohnius, Phys. Rep., Vol. 128, 39, 1985.
    doi:10.1016/0370-1573(77)90066-7

    9. Cooper, F. and B. Freedman, Ann. Phys., Vol. 146, 262, 1983.
    doi:10.1016/0003-4916(83)90034-9

    10. Bender, C., F. Cooper, and A. Das, Phys. Rev. D, Vol. 28, 1473, 1983.
    doi:10.1103/PhysRevD.28.1473

    11. Gates, Jr., S. J., M. Grisaru, M. Rocek, and W. Siegel, Superspace or One Thousand and One Lessons in Supersymmetry, Benjamin/Cummings, Reading, Mass., 1983.

    12. Green, M. B., J. Schwarz, and E. Witten, Superstring Theory, Cambridge, 1987.

    13. Cooper, F., A. Khare, and U. Sukhatme, "Supersymmetry and quantum mechanics," Phys. Rep., Vol. 251, 267, 1995.
    doi:10.1016/0370-1573(94)00080-M

    14. Cooper, F., J. N. Ginocchio, and A. Khare, Phys. Rev. D, Vol. 36, 356, 1983.

    15. Nikiforov, A. F. and V. B. Uvarov, "Special functions of mathematical physics ," Birkhauser, Basel, 1988.

    16. Aktas, M. and R. Sever, "Exact supersymmetric solution of Schrodinger equation for central confining potentials by using the Nikiforov-Uvarov method ," J. Mol. Struct. Theochem, Vol. 710, 223, 2004.
    doi:10.1016/j.theochem.2004.09.011

    17. Berkdemir, A., C. Berkdemir, and J. Han, "Bound state solutions of the Schrodinger equation for modified Kratzer's molecular potential ," Chem. Phys. Lett., Vol. 417, 326, 2006.
    doi:10.1016/j.cplett.2005.10.039

    18. Berkdemir, C., A. Berkdemir, and R. Sever, "Systematical approach to the exact solutions of the Dirac equation for a deformed form of the Woods-Saxon potential," J. Phys. A: Math. Gen., Vol. 39, 13455, 2006.
    doi:10.1088/0305-4470/39/43/005

    19. Yasuk, F., A. Durmus, and I. Boztosun, "Exact analytical solution to the relativistic Klein-Gordon equation with non-central equal scalar and vector potentials," J. Math. Phys., Vol. 47, 082302, 2006.
    doi:10.1063/1.2227258

    20. Egrifes, H. and R. Sever, "Bound state of the Dirac equation for the PT-symmetric generalized Hulthen potential by the Nikiforov-Uvarov method," Phys. Lett. A, Vol. 344, 117, 2005.
    doi:10.1016/j.physleta.2005.06.061

    21. Simsek, M. and H. Egrifes, "The Klein-Gordon equation for the generalized Hulthen potential in complex quantum mechanics," J. Phys. A: Math. Gen., Vol. 37, 4379, 2004.
    doi:10.1088/0305-4470/37/15/007

    22. Bayrak, O. and I. Boztosun, "Analytical solution to the Hulthen and Morse potentials by using the asymptotic iteration method," J. Mol. Struct. Theochem, Vol. 802, 17, 2007.
    doi:10.1016/j.theochem.2006.09.006

    23. Yasuk, F., C. Berkdemir, and A. Berkdemir, "Exact solutions of the Schrodinger equation with non-central potential by the Nikiforov-Uvarov method ," J. Phys. A: Math. Gen., Vol. 38, 6579, 2005.
    doi:10.1088/0305-4470/38/29/012

    25. Yasiltas, O., "PT/non-PT symmetric and non-Hermitian Poschl-Teller-like solvable potentials Nikiforov-Uvarov method," Phys. Scr., Vol. 75, 41, 2007.
    doi:10.1088/0031-8949/75/1/006

    25. Hatamzadeh-Varmazyar, S. and M. Naser-Moghadasi, "New numerical method for determining the scattered electromagnetic fields from thin wires," Progress In Electromagnetics Research B, Vol. 3, 207-218, 2008.
    doi:10.2528/PIERB07121303

    26. Banai, A. and A. Hashemi, "A hybrid multimode contour integral method for analysis of the H-plane waveguide discontinuties," Progress In Electromagnetics Research, Vol. 81, 167-182, 2008.
    doi:10.2528/PIER07122601

    27. Ho, M., F.-S. Lai, S.-W. Tan, and P.-W. Chen, "Numerical simulation of propagation of EM pulse through lossless nonuniform dielectric slab using characteristic-based method ," Progress In Electromagnetics Research, Vol. 81, 197-212, 2008.
    doi:10.2528/PIER08010303

    28. Collino, F., F. Millot, and S. Pernet, "Boundary-integral methods for iterative solution of scattering problems with variable impedance surface condition ," Progress In Electromagnetics Research, Vol. 80, 1-28, 2008.
    doi:10.2528/PIER07103105

    29. Carpentieri, B., "Fast iterative solution methods in electromagnetic scattering," Progress In Electromagnetics Research , Vol. 79, 151-178, 2008.
    doi:10.2528/PIER07100802

    30. Singh, V., Y. Prajapati, and J. P. Saini, "Modal analysis and dispersion curves of a new unconventional Bragg waveguide using a very simple method ," Progress In Electromagnetics Research, Vol. 64, 191-204, 2006.
    doi:10.2528/PIER06071101

    31. Khalaj-Amirhosseini, M., "Analysis of lossy inhomogeneous planar layers using equivalent sources method," Progress In Electromagnetics Research, Vol. 72, 61-73, 2007.
    doi:10.2528/PIER07030802

    32. Berginc, G. and C. Bourrely, "The small-slope approximation method applied to a three-dimensional slab with rough boundaries," Progress In Electromagnetics Research, Vol. 73, 131-211, 2007.
    doi:10.2528/PIER07030806

    33. Kazemi, S., H. R. Hassani, G. Dadashzadeh, and F. Geran, "Performance improvement in amplitude synthesis of unequally spaced array using least mean square method ," Progress In Electromagnetics Research B, Vol. 1, 135-145, 2008.
    doi:10.2528/PIERB07103002

    34. Samuel, E. P. and D. S. Patil, "Analysis of wavefunction distribution in quantum well biased laser diode using transfer matrix method," Progress In Electromagnetics Research Letters, Vol. 1, 119-128, 2008.
    doi:10.2528/PIERL07111902