Vol. 95

Latest Volume
All Volumes
All Issues
2022-05-20

The Role of Jordan Blocks in the MOT-Scheme Time Domain EFIE Linear-in-Time Solution Instability

By Petrus Wilhelmus Nicolaas (Pieter) Van Diepen, Roeland Johannes Dilz, Adrianus Petrus Maria (Peter) Zwamborn, and Martijn Constant van Beurden
Progress In Electromagnetics Research B, Vol. 95, 123-140, 2022
doi:10.2528/PIERB22030205

Abstract

The marching-on-in-time electric field integral equation (MOT-EFIE) and the marching-on-in-time time differentiated electric field integral equation (MOT-TDEFIE) based on a Rao-Wilton-Glisson (RWG) spatial discretization. In both formulations we employ the Dirac-delta temporal testing functions, however they differ in temporal basis functions, i.e. hat and quadratic spline basis functions. These schemes suffer from the linear-in-time solution instability. We analyze the corresponding companion matrices using projection matrices and prove mathematically that each independent solenoidal current density corresponds to a Jordan block of size two. In combination with Lidskii-Vishik-Lyusternik perturbation theory we find that finite precision causes these Jordan block eigenvalues to split and this is the root cause of the instability of both schemes. The splitted eigenvalues cause solutions with exponentially increasing magnitudes that are initially observed as constant and/or linear-in-time, yet these become exponentially increasing at discrete time steps beyond the inverse square root of the error due to finite precision, i.e. approximately after one hundred million discrete time steps in double precision arithmetic. We provide numerical evidence to further illustrate these findings.

Citation


Petrus Wilhelmus Nicolaas (Pieter) Van Diepen, Roeland Johannes Dilz, Adrianus Petrus Maria (Peter) Zwamborn, and Martijn Constant van Beurden, "The Role of Jordan Blocks in the MOT-Scheme Time Domain EFIE Linear-in-Time Solution Instability," Progress In Electromagnetics Research B, Vol. 95, 123-140, 2022.
doi:10.2528/PIERB22030205
http://jpier.org/PIERB/pier.php?paper=22030205

References


    1. Jin, J.-M. and S. Yan, "Multiphysics modeling in electromagnetics," IEEE Antennas and Propagation Magazine, 14-26, April 2019.

    2. Sankaran, K., "Are you using the right tools in computational electromagnetics?," Engineering Reports, Vol. 1, No. 3, 1-19, 2019.
    doi:10.1002/eng2.12041

    3. Miller, E. K., "A selective survey of computational electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 36, No. 9, 1281-1305, 1988.
    doi:10.1109/8.8607

    4. Weile, D. S., J. Li, D. A. Hopkins, and C. Kerwein, "New trends in time-domain integral equations," New Trends in Computational Electromagnetics, O. Ergul, ed., 1st Edition, Ch. 5, 207-233, SciTech Publishing, London, 2019.

    5. Liu, Y. and E. Michielssen, "Parallel fast time-domain integral-equation methods for transient electromagnetic analysis," Parallel Algorithms in Computational Science, A. Grama and A. H. Sameh (eds.), 1st Edition, Ch. 2.8, 347-379, Cham, Switzerland, Birkhauser, 2020.

    6. Poggio, A. and E. Miller, "Integral equation solutions of three-dimensional scattering problems," Computer Techniques for Electromagnetics, R. Mittra (ed.), 1st Edition, Ch. 4, 159-264, Pergamon Press, Oxford, 1973.

    7. Andriulli, F. P., K. Cools, F. Olyslager, and E. Michielssen, "Time domain Calderon identities and their application to the integral equation analysis of scattering by PEC objects. Part II: Stability," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 8, 2365-2375, 2009.
    doi:10.1109/TAP.2009.2024464

    8. Shanker, B., M. Lu, J. Yuan, and E. Michielssen, "Time domain integral equation analysis of scattering from composite bodies via exact evaluation of radiation fields," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 5, 1506-1520, 2009.
    doi:10.1109/TAP.2009.2016700

    9. Van 't Wout, E., D. R. van der Heul, H. van der Ven, and C. Vuik, "The influence of the exact evaluation of radiation fields in finite precision arithmetic on the stability of the time domain integral equation method," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 12, 6064-6074, 2013.
    doi:10.1109/TAP.2013.2281365

    10. Van 't Wout, E., D. R. van der Heul, H. van der Ven, and C. Vuik, "Stability analysis of the marching-on-in-time boundary element method for electromagnetics," Journal of Computational and Applied Mathematics, Vol. 294, 358-371, 2016.
    doi:10.1016/j.cam.2015.09.002

    11. Weile, D. S., G. Pisharody, N. W. Chen, B. Shanker, and E. Michielssen, "A novel scheme for the solution of the time-domain integral equations of electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 1, 283-295, 2004.
    doi:10.1109/TAP.2003.822450

    12. Tian, X. and G. Xiao, "Time-domain augmented electric field integral equation for a robust marching on in time solver," IET Microwaves, Antennas and Propagation, Vol. 8, No. 9, 688-694, 2014.
    doi:10.1049/iet-map.2013.0476

    13. Cools, K., F. P. Andriulli, F. Olyslager, and E. Michielssen, "Time domain Calderon identities and their application to the integral equation analysis of scattering by PEC objects. Part I: Preconditioning," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 8, 2352-2364, 2009.
    doi:10.1109/TAP.2009.2024460

    14. Beghein, Y., K. Cools, and F. P. Andriulli, "A DC stable and large-time step well-balanced TDEFIE based on quasi-helmholtz projectors," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 7, 3087-3097, 2015.
    doi:10.1109/TAP.2015.2426796

    15. Dely, A., F. P. Andriulli, and K. Cools, "Large time step and DC stable TD-EFIE discretized with implicit Runge-Kutta methods," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 2, 976-985, 2020.
    doi:10.1109/TAP.2019.2943443

    16. Dodson, S., S. Walker, and M. Bluck, "Implicitness and stability of time domain integral equation scattering analyses," The Applied Computational Electromagnetics Society, Vol. 13, No. 3, 291-301, 1998.

    17. Wilton, D. R., S. M. Rao, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 3, 409-418, 1982.
    doi:10.1109/TAP.1982.1142818

    18. Horn, R. A. and C. R. Johnson, Matrix Analysis, 2nd Ed., Cambridge University Press, New York, 2013.

    19. Moro, J., J. V. Burke, and M. L. Overton, "On the Lidski-Vishik-Lyusternik perturbation theory for eigenvalues of matrices with arbitrary Jordan structure," SIAM Journal on Matrix Analysis and Applications, Vol. 18, No. 4, 793-817, 1997.
    doi:10.1137/S0895479895294666

    20. Vechinski, D. and S. Rao, "A stable procedure to calculate the transient scattering by conducting surfaces of arbitrary shape," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 6, 661-665, 1992.
    doi:10.1109/8.144600

    21. Andriulli, F. P., K. Cools, I. Bogaert, and E. Michielssen, "On a well-conditioned electric field integral operator for multiply connected geometries," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 4, 2077-2087, 2013.
    doi:10.1109/TAP.2012.2234072

    22. Bronson, R., G. B. Costa, and J. T. Saccoman, "Appendix A --- Jordan canonical forms," Linear Algebra, 379-411, Academic Press, 2014.