Vol. 93

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-09-28

Optimization Design Methodology of Broadband OR Multiband Antenna for RF Energy Harvesting Applications

By Reham M. Yaseen, Dhirgham Kamal Naji, and Amina M. Shakir
Progress In Electromagnetics Research B, Vol. 93, 169-194, 2021
doi:10.2528/PIERB21070104

Abstract

In this paper, a patch antenna (PA) and its self-complementary structure, slot antenna (SA) are proposed and designed for directly matching the impedance of a rectifierat 2.45 GHz resonance frequency. The structures of these antennas comprise three sections, meandered-line, spiral, and a double-folded geometries, which make their geometrical parameters to be varied in easy manner according to design equations. In order to enhance both the desired level of a complex reflection coefficient of antenna at given resonance frequencies and the specified lower and higher frequencies constituting the impedance frequency bands, a new fitness function is presented. This fitness function is applied in designing broadband or multiband antennas having approximately perfect conjugate impedance matching with the impedance of a rectifier suitably used for RF Energy Harvesting (RF EH) application. An optimization design methodology based on two programs operating in synchronous manner, the particle swarm optimization (PSO) implemented in MATLAB simulation tool anda CST MWS Electromagnetic (EM) solver, is applied to the designed PA as an illustrative example. The simulation results reveal that our design methodology is helpful to obtain an optimized PA (OPA) having good impedance matching at the desired resonance frequency along with appropriate band. Measured result of the fabricated prototype is in good agreement with the simulated ones. Moreover, acceptable features such as small size, omnidirectional radiation, and broadband operation satisfy the (2.4-2.5 GHz) WLAN band, which strongly makesthe OPA a good candidate for RF EH applications.

Citation


Reham M. Yaseen, Dhirgham Kamal Naji, and Amina M. Shakir, "Optimization Design Methodology of Broadband OR Multiband Antenna for RF Energy Harvesting Applications," Progress In Electromagnetics Research B, Vol. 93, 169-194, 2021.
doi:10.2528/PIERB21070104
http://jpier.org/PIERB/pier.php?paper=21070104

References


    1. Ran, L. G., H. K. Cha, and W. T. Park, "RF power harvesting: A review on designing methodologies and applications," Micro. and Nano Syst. Lett., Vol. 5, 14, 2017.
    doi:10.1186/s40486-017-0051-0

    2. Sleebi, K., D. Deepti, and Nasimuddin, "RF energy harvesting systems: An overview and design issues," Int. J. RF Microw. Comput. Aided Eng., Vol. 29, No. 1, 1-15, 2018.

    3. Wagih, M., A. S. Weddell, and S. Beeby, "Rectennas for radio-frequency energy harvesting and wireless power transfer: A review of antenna design [antenna applications corner]," IEEE Antennas and Propagation Magazine, Vol. 62, No. 5, 95-107, Oct. 2020.
    doi:10.1109/MAP.2020.3012872

    4. Chen, Y. and C. Chiu, "Maximum achievable power conversion efficiency obtained through an optimized rectenna structure for RF energy harvesting," IEEE Trans. Antennas Propag., Vol. 65, No. 5, 2305-2317, May 2017.
    doi:10.1109/TAP.2017.2682228

    5. Almoneef, S., "Design of a rectenna array without a matching network," IEEE Access, Vol. 8, 109071-109079, 2020.
    doi:10.1109/ACCESS.2020.3001903

    6. Song, C., et al., "Matching network elimination in broadband rectennas for high-efficiency wireless power transfer and energy harvestin," IEEE Transactions on Industrial Electronics, Vol. 64, No. 5, 3950-3961, May 2017.
    doi:10.1109/TIE.2016.2645505

    7. Sabhan, D., V. J. Nesamoni, and J. Thangappan, "An efficient 2.45 GHz spiral rectenna without a matching circuit for RF energy harvesting," Wireless Personal Communications, Vol. 119, 713-726, 2021.
    doi:10.1007/s11277-021-08233-5

    8. Jing, J., J. Pang, S. Wang, Z. Qiu, and C. Liu, "A compact hollowed-out loop rectenna without matching network for wireless sensor applications," Int. J. RF Microw. Comput. Aided Eng., e22417, 2020.

    9. Zeng, M., A. S. Andrenko, X. Liu, Z. Li, and H.-Z. Tan, "A compact fractal loop rectenna for RF energy harvesting," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2424-2427, 2017.
    doi:10.1109/LAWP.2017.2722460

    10. Wagih, M., A. S. Weddell, and S. Beeby, "Meshed high-impedance matching network-free rectenna optimized for additive manufacturing," IEEE Open Journal of Antennas and Propagation, Vol. 1, 615-626, 2020.
    doi:10.1109/OJAP.2020.3038001

    11. Visser, H., S. Keyrouz, and A. Smolders, "Optimized rectenna design," Wireless Power Transfer, Vol. 2, No. 1, 44-50, 2015.
    doi:10.1017/wpt.2014.14

    12. Sun, H., Y.-X. Guo, M. He, and Z. Zhong, "Design of a high-efficiency 2.45-GHz rectenna for low-input-power energy harvesting," IEEE Antennas Wireless Propag. Lett., Vol. 11, 929-932, 2012.

    13. Hagerty, J. A., F. B. Helmbrecht, W. H. McCalpin, R. Zane, and Z. B. Popovic, "Recycling ambient microwave energy with broad-band rectenna arrays," IEEE Trans. Microw. Theory Techn., Vol. 52, No. 3, 1014-1024, Mar. 2004.
    doi:10.1109/TMTT.2004.823585

    14. De Long, B. J., A. Kiourti, and J. L. Volakis, "A radiating near-field patch rectenna for wireless power transfer to medical implants at 2.4 GHz," IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, Vol. 2, No. 1, 64-69, Mar. 2018.
    doi:10.1109/JERM.2018.2815905

    15. Shen, S., C. Chiu, and R. D. Murch, "A dual-port triple-band l-probe microstrip patch rectenna for ambient RF energy harvesting," IEEE Antennas Wireless Propag. Lett., Vol. 16, 3071-3074, 2017.
    doi:10.1109/LAWP.2017.2761397

    16. Shi, Y., Y. Fan, Y. Li, L. Yang, and M. Wang, "An efficient broadband slotted rectenna for wireless power transfer at LTE band," IEEE Trans. Antennas Propag., Vol. 67, No. 2, 814-822, Feb. 2019.
    doi:10.1109/TAP.2018.2882632

    17. Nie, M., X. Yang, G. Tan, and B. Han, "A compact 2.45-GHz broadband rectenna using grounded coplanar waveguid," IEEE Antennas Wireless Propag. Lett., Vol. 14, 986-989, Dec. 2015.
    doi:10.1109/LAWP.2015.2388789

    18. Hassan, N., Z. Zakaria, Y. W. Sam, and I. N. M. Hanapiah, "Design of dual-band micro strip patch antenna with right-angle triangular aperture slot for energy transfer application," Wiley RF and Microwave Computer-Aided Engineering, e21666, 2018.

    19. Mohd Noor, F. S., Z. Zakaria, H. Lago, and M. A. Meor Said, "Dual-band aperture-coupled rectenna for radio frequency energy harvesting," Int. J. RF Microw. Comput. Aided Eng., Vol. 29, No. 1, e21651, 2019.
    doi:10.1002/mmce.21651

    20. Bhatt, K., S. Kumar, P. Kumar, and C. C. Tripathi, "Highly efficient 2.4 and 5.8 GHz dual-band rectenna for energy harvesting applications," IEEE Antennas Wireless Propag. Lett., Vol. 18, No. 12, 2637-2641, Dec. 2019.
    doi:10.1109/LAWP.2019.2946911

    21. Sun, H., Y.-X. Guo, M. He, and Z. Zhong, "Design of a high-efficiency 2.45-GHz rectenna for low-input-power energy harvesting," IEEE Antennas Wireless Propag. Lett., Vol. 11, 929-932, 2012.

    22. Boursianis, A. D., et al., "Multiband patch antenna design using nature-inspired optimization method," IEEE Open Journal of Antennas and Propagation, Vol. 2, 151-162, 2021.
    doi:10.1109/OJAP.2020.3048495

    23. Ahn, C.-H. and S. Oh, "High gain pentagonal loop rectifying antenna," Microw. Opt. Technol. Lett., Vol. 60, 1075-1079, 2018.
    doi:10.1002/mop.31110

    24. Travassos, X. L., D. A. G. Vieira, and A. C. Lisbo, "Antenna optimization using multiobjective algorithms," ISRN Communications and Networking, Vol. 2012, 2012.

    25. Kaur, G., M. Rattan, and C. Jain, "Optimization of swastika slotted fractal antenna using genetic algorithm and bat algorithm for S-band utilities," Wireless Personal Communications, Vol. 97, No. 1, 95-107, 2017.
    doi:10.1007/s11277-017-4495-6

    26. Kaur, G., M. Ratta, and C. Jain, "Design and optimization of psi (ψ) slotted fractal antenna using ANN and GA for multiband applications," Wireless Personal Communications, Vol. 97, No. 3, 4573-4585, 2017.
    doi:10.1007/s11277-017-4739-5

    27. Jayasinghe, J. W., J. Anguera, and D. N. Uduwawala, "A simple design of multi band microstrip patch antennas robust to fabrication tolerances for GSM, UMT, LTE, and Bluetooth applications by using genetic algorithm optimization," Progress In Electromagnetics Research M, Vol. 27, 255-269, 2012.
    doi:10.2528/PIERM12102705

    28. Jabar, A. A. S. A. and D. K. Naji, "Optimization design methodology of miniaturized ve-band antenna for RFID, GSM, and WiMAX applications," Progress In Electromagnetics Research B, Vol. 83, 177-201, 2019.
    doi:10.2528/PIERB19012905

    29. Jin, N. and Y. Rahmat-Samii, "Hybrid real-binary particle swarm optimization (HPSO) in engineering electromagnetics," IEEE Trans. Antennas Propag., Vol. 58, No. 12, 3786-3794, 2010.
    doi:10.1109/TAP.2010.2078477

    30. Jin, N. and Y. Rahmat-Samii, "Advances in particle swarm optimization for antenna designs: Real-number, binar, single-objective and multiobjective implementation," IEEE Tran. Antennas Propag., Vol. 55, No. 3, 556-567, 2007.
    doi:10.1109/TAP.2007.891552

    31. Choudhury, B., S. Manickam, and R. M. Jha, "Particle swarm optimization for multiband metamaterial fractal antenna," Journal of Optimization, 2013.

    32. Sun, L.-L., J.-T. Hu, K.-Y. Hu, M.-W. He, and H.-N. Chen, "Multi-species particle swarms optimization based on orthogonal learning and its application for optimal design of a butter y shaped patch antenna," J. Cent. South Univ., Vol. 23, No. 8, 2048-2062, 2016.
    doi:10.1007/s11771-016-3261-3

    33. Tang, M.-C., X. Chen, M. Li, and R. Ziolkowski, "Particle swarm optimized, 3D-printed, wideband, compact hemispherical antenna," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 11, 2031-2035, 2018.
    doi:10.1109/LAWP.2018.2847286

    34. Martinez-Fernandez, J., J. M. Gil, and J. Zapata, "Ultrawideband optimized profile monopole antenna by means of simulated annealing algorithm and the finite element method," IEEE Trans. Antennas Propag., Vol. 55, No. 6, 1826-1832, 2007.
    doi:10.1109/TAP.2007.898593

    35. Dastranj, A., "Optimization of a printed UWB antenna: Application of the invasive weed optimization algorithm in antenna design," IEEE Antennas and Propagation Magazine, Vol. 59, No. 1, 48-57, 2017.
    doi:10.1109/MAP.2016.2630025

    36. Monavar, F. M., N. Komjani, and P. Mousavi, "Application of invasive weed optimization to design a broadband patch antenna with symmetric radiation pattern," IEEE Antennas Wireless Propag. Lett., Vol. 10, 1369-1372, 2011.
    doi:10.1109/LAWP.2011.2177801

    37. Karimkashi, S. and A. A. Kishk, "Invasive weed optimization and its features in electromagnetics," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1269-1278, 2010.
    doi:10.1109/TAP.2010.2041163

    38. Bhaskar, S. and A. K. Singh, "A compact meander line UHF RFID antenna for passive tag applications," Progress In Electromagnetics Research M, Vol. 99, 57-67, 2021.
    doi:10.2528/PIERM20082103

    39. Rahmat-Samii, Y., J. M. Kovitz, and H. Rajagopalan, "Nature-inspired optimization techniques in communication antenna designs," Proceedings of the IEEE, Vol. 100, No. 7, 2132-2144, Jul. 2012.
    doi:10.1109/JPROC.2012.2188489