Vol. 92

Latest Volume
All Volumes
All Issues
2021-05-12

A High Gain Inverse Concentric Yagi Director Antenna for 5G Millimetre-Wave and Satellite Communication

By Raqeebur Rehman, Javaid A. Sheikh, Khurshed A. Shah, and Ghulam Mohiuddin Bhat
Progress In Electromagnetics Research B, Vol. 92, 127-148, 2021
doi:10.2528/PIERB21040501

Abstract

A novel high gain two port planar antenna for 5G millimetre-wave and satellite band is presented. The proposed antenna besides working in the millimetre-wave range has an added feature to work for the satellite X-band as well. The antenna has a miniaturised low-cost planar geometry having the dimensions of 1.83λ x 1.83λ x 0.07λ at 27.5 GHz, designed and fabricated on a Rogers RT/duroid substrate of thickness 0.8 mm. The proposed antenna has return loss values of 12.34 dB and 17.94 dB for the two resonant millimetre wave frequencies of 27.24 GHz and 28.88 GHz respectively and 12.66 dB for the satellite band frequency of 8.42 GHz. The antenna attains a peak gain of 10.2 dBi for 28 GHz millimetre wave band and 6.2 dBi for satellite X-band by exploiting an inverse micro-strip Yagi director geometry. The isolation between two ports has been found satisfactory thus making it operate efficiently forthe available Ka and X band capacity of the Wideband Global Satcom system (WGS). The experimental results regarding the fabricated prototype are presented and compared with the simulated results, which are in good agreement. The performance of proposed antenna regarding radiation efficiency, directivity, gain, radiation pattern, and good isolation between the two ports makes the antenna employed as a suitable candidate for satellite communication and especially for 5G millimetre-wave communication.

Citation


Raqeebur Rehman, Javaid A. Sheikh, Khurshed A. Shah, and Ghulam Mohiuddin Bhat, "A High Gain Inverse Concentric Yagi Director Antenna for 5G Millimetre-Wave and Satellite Communication," Progress In Electromagnetics Research B, Vol. 92, 127-148, 2021.
doi:10.2528/PIERB21040501
http://jpier.org/PIERB/pier.php?paper=21040501

References


    1. Ayanoglu, E., A. L. Swindlehurst, P. Heydari, and F. Capolino, "Millimeter-wave massive MIMO: The next wireless revolution," IEEE Communications Mag., Vol. 52, No. 9, 56-62, 2014.
    doi:10.1109/MCOM.2014.6894453

    2. Rappaport, T. S., R. H. Mayzus, and S. Zhao, "Millimeter-wave mobile communications for 5G: It will work!," IEEE Acces., Vol. 1, No. 1, 225-349, 2013.

    3. Roh, W., J. Park, J. H. Park, and J. Y. Seol, "Millimeter-wave beam-forming as an enabling tech. for 5G cellular communications: Theoretical feasibility & prototype results," IEEE Com., Vol. 52, No. 2, 106-113, 2016.
    doi:10.1109/MCOM.2014.6736750

    4. Kim, Y. and H. Lee, "Feasibility of mobile cellular communications at millimetre wave frequency," IEEE Journ. of Selected Topics in Signal Procesg., Vol. 10, No. 3, 589-599, 2016.
    doi:10.1109/JSTSP.2016.2520901

    5. Wang, H., D. G. Fang, B. Zhang, and W. Q. Che, "Dielectric loaded SIW H-plane horn antennas," IEEE Trans. Antennas and Propa., Vol. 58, No. 3, 640-647, 2010.
    doi:10.1109/TAP.2009.2039298

    6. Li, M. and K. M. Luk, "Wideband 60-GHz magneto-electric dipole antenna for mmWave communications," IEEE Trans. Antennas and Propa., Vol. 63, No. 7, 3276-3279, 2015.
    doi:10.1109/TAP.2015.2425418

    7. Zhang, Y., X. Qing, Z. N. Chen, and W. Hong, "Wideband mmWave SIW slotted narrow-wall fed cavity antennas," IEEE Trans. Antennas and Propa., Vol. 59, No. 5, 1488-1496, 2011.
    doi:10.1109/TAP.2011.2123055

    8. Yang, T. Y., W. Hong, and Y. Zhang, "Wideband mmWave SIW cavity-backed rectangular patch antenna," IEEE Anten. Wireless Propag. Lett., Vol. 13, 205-208, 2014.
    doi:10.1109/LAWP.2014.2300194

    9. Djerafi, T. and K. Wu, "Corrugated substrate integrated waveguide (SIW) antipodal linearly tapered slot antenna array fed by quasi-triangular power divider," Progress In Electromagnetics Research C, Vol. 26, 139-151, 2012.
    doi:10.2528/PIERC11091912

    10. Ghiotto, A., F. Parment, K. Wu, and T. P. Vuong, "Millimeter-wave air-filled substrate integrated waveguide antipodal linearly tapered slot antenna," IEEE Anten. Wireless Propag. Lett., Vol. 24, No. 5, 1-4, 2016.

    11. Fan, K., Z.-C. Hao, Q. Yuan, J. Hu, G. Q. Luo, and W. Hong, "Wideband horizontally polarized omni-directional antenna with a conical beam for millimeter-wave applications," IEEE Trans. Antennas and Propa., Vol. 66, No. 9, 4437-4448, 2018.
    doi:10.1109/TAP.2018.2851363

    12. Ali, W., S. Das, H. Medkour, and S. Lakrit, "Planar dual-band 27/39 GHz millimeter-wave MIMO antenna for 5G applications," Microsystem Tech., Vol. 27, No. 1, 283-292, 2021.
    doi:10.1007/s00542-020-04951-1

    13. Yang, B., et al., "Compact tapered slot millimeter-wave antenna array for massive MIMO 5G systems," IEEE Trans. Antennas and Propa., Vol. 65, No. 12, 6721-6727, 2017.
    doi:10.1109/TAP.2017.2700891

    14. Kumar, A., M. S. Mahendra, and P. Y. Rajendra, "Dual wideband circular polarised CPW-fed strip and slots loaded compact square slot antenna for wireless and satellite applications," AEU-International Journ. of Electronics and Commun., Vol. 108, 181-188, 2019.

    15. Ghazizadeh, M. H. and M. Fakharzadeh, "60 GHz omni-directional segmented loop antenna," IEEE Internat. Symp. on Ant. and Propagation, 1653-1654, Fajardo, U.S.A, June–July 2016.

    16. Rehman, R., J. A. Sheikh, and Z. A. Bhat, "A novel high gain two port antenna for licensed and unlicensed millimeter-wave communication," 2020 IEEE International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), 1-5, Vellore, India, February 2020.

    17. Zhou, Z., Z. Wei, Z. Tang, and Y. Yin, "Design and analysis of a high isolation wideband multiple-microstrip antenna dipole," IEEE Anten. Wireless Propag. Lett., Vol. 18, No. 4, 722-726, 2019.
    doi:10.1109/LAWP.2019.2901838

    18. Tang, M. C., et al., "Compact tri-polarization diversity wideband, reconfigurable and wideband filtenna," IEEE Trans. Antennas and Propa., Vol. 67, No. 8, 5689-5694, 2019.
    doi:10.1109/TAP.2019.2920298

    19. Wang, J., et al., "Graphene-based microwave antennas with reconfigurable pattern," IEEE Trans. Antennas and Propa., Vol. 68, No. 4, 2504-2510, 2019.
    doi:10.1109/TAP.2019.2952239

    20. Hussain, S., S. W. Qu, W. L. Zhou, P. Zhang, and S. Yang, "Design and fabrication of wideband dual-polarized dipole array for 5G wireless systems," IEEE Acces., Vol. 8, 65155-65163, 2020.
    doi:10.1109/ACCESS.2020.2984613

    21. Wu, G. B., et al., "High-gain filtering reflect-array antenna for millimeter-wave applications," IEEE Trans. Antennas and Propa., Vol. 68, No. 2, 805-812, 2020.
    doi:10.1109/TAP.2019.2943432

    22. Farahat, A. E. and K. F. A. Hussein, "28/38 GHz dual-band Yagi-Uda antenna with corrugated radiator and enhanced reflectors for 5G MIMO antenna systems," Progress In Electromagnetics Research C, Vol. 101, 159-172, 2020.
    doi:10.2528/PIERC20022603

    23. Kaur, A. and P. K. Malik, "Multiband elliptical patch fractal and defected ground structures microstrip patch antenna for wireless applications," Progress In Electromagnetics Research B, Vol. 91, 157-173, 2021.
    doi:10.2528/PIERB20102704