Vol. 93

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-07-13

Compact 2 × 2 Automotive MIMO Antenna Systems for Sub-6 GHz 5G and V2X Communications

By Ahmad Yacoub, Mohamed Khalifa, and Daniel N. Aloi
Progress In Electromagnetics Research B, Vol. 93, 23-46, 2021
doi:10.2528/PIERB21031606

Abstract

Various multiple-input multiple-output (MIMO) antenna systems for vehicles are presented in this paper usingtwo uniquely designed elements: low profile wideband Planar Inverted-F antenna (PIFA), and compact wideband monopole for automotive application in the sub-6 GHz 5G systems and Vehicle-to-Everything (V2X) communications that operate on the frequency range from 617 MHz to 6 GHz. This paper presents different MIMO configurations to be used in a low-profile housing or a shark fin style on the vehicle's roof. Each MIMO system achievesa satisfactory MIMO performance across the whole band withsuitable physical dimensions. The envelope correlation coefficient (ECC) and diversity gain (DG) are calculated using MATLAB in each MIMO configuration as they represent the two key factors in the MIMO performance. Simulation results are presented along with measured data on 1-meter rolled-edge ground plane (GND) and on vehicle's roof from properly cut metal sheet prototypes. The results are discussed in terms of VSWR, passive isolation between elements, combined radiation patterns, port-efficiencies, ECC and DG.

Citation


Ahmad Yacoub, Mohamed Khalifa, and Daniel N. Aloi, "Compact 2 × 2 Automotive MIMO Antenna Systems for Sub-6 GHz 5G and V2X Communications," Progress In Electromagnetics Research B, Vol. 93, 23-46, 2021.
doi:10.2528/PIERB21031606
http://jpier.org/PIERB/pier.php?paper=21031606

References


    1. Malik, J., D. Nagpal, and M. V. Kartikeyan, "MIMO antenna with omnidirectional pattern diversity," Electronics Letters, Vol. 52, No. 2, 102-104, Jan. 21, 2016.
    doi:10.1049/el.2015.3063

    2. Dama, Y. A. S., R. A. Abd-Alhameed, S. M. R. Jones, D. Zhou, N. J. McEwan, M. B. Child, and P. S. Excell, "An envelope correlation formula for (N, N) MIMO antenna arrays using input scattering parameters, and including power losses," International Journal of Antennas Propagation, Vol. 2011, Article ID 421691, 7 pages, 2011.

    3. Elshirkasi, A. M., A. Abdullah Al-Hadi, M. F. Mansor, R. Khan, and P. J. Soh, "Envelope correlation coefficient of a two-port MIMO terminal antenna under uniform and Gaussian angular power spectrum with user's hand effect," Progress In Electromagnetics Research C, Vol. 92, 123-136, 2019.
    doi:10.2528/PIERC19011006

    4. Zhekov, S. S., A. Tatomirescu, E. Foroozanfard, and G. F. Pedersen, "Experimental investigation on the effect of user's hand proximity on a compact ultrawideband MIMO antenna array," IET Microwaves, Antennas Propag., Vol. 10, No. 13, 1402-1410, 2016.
    doi:10.1049/iet-map.2016.0054

    5. Sharawi, M., A. Hassan, and M. Khan, "Correlation coefficient calculations for MIMO antenna systems: A comparative study," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 10, 1991-2004, 2017.
    doi:10.1017/S1759078717000903

    6. Arianos, S., G. Dassano, F. Vipiana, and M. Orefice, "Design of multi-frequency compact antennas for automotive communications," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 12, 5604-5612, Dec. 2012.
    doi:10.1109/TAP.2012.2213052

    7. Artner, G., W. Kotterman, G. Del Galdo, and M. A. Hein, "Automotive antenna roof for cooperative connected driving," IEEE Access, Vol. 7, 20083-20090, 2019.
    doi:10.1109/ACCESS.2019.2897219

    8. Vaughan, R. G. and J. B. Andersen, "Antenna diversity in mobile communications," IEEE Trans. Veh. Technol., Vol. 36, No. 4, 149-172, 1987.
    doi:10.1109/T-VT.1987.24115

    9. Beegum, S. F. and S. K. Mishra, "Compact WLAN band-notched printed ultrawideband MIMO antenna with polarization diversity," Progress In Electromagnetics Research C, Vol. 61, 149-159, 2016.

    10. Gao, Y., X. Chen, Z. Ying, and C. Parini, "Design and performance investigation of a dual-element PIFA array at 2.5 GHz for MIMO terminal," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 12, 3433-3441, Dec. 2007.
    doi:10.1109/TAP.2007.910353

    11. Yacoub, A., M. Khalifa, and D. N. Aloi, "Wide bandwidth low profile PIFA antenna for vehicular sub-6 GHz 5G and V2X wireless systems," Progress In Electromagnetics Research C, Vol. 109, 257-273, 2021.
    doi:10.2528/PIERC21010609

    12. Kwon, O., R. Song, and B. Kim, "A fully integrated shark-fin antenna for MIMO-LTE, GPS, WLAN, and WAVE applications," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 4, 600-603, Apr. 2018.
    doi:10.1109/LAWP.2018.2805681

    13. Kammakattu, S., P. Bora, M. Mudaliar, Y. Dhanade, and B. Madhav, "Linear array Yagi-Uda 5G antenna for vehicular application," International Journal of Engineering & Technology, Vol. 7, 513-517, 2017.

    14. Franchina, V., et al., "A compact 3D antenna for automotive LTE MIMO applications," 2017 IEEEAPS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), 326-329, Verona, 2017.

    15. Hasturkoglu, S., M. Almarashli, and S. Lindenmeier, "A compact wideband terrestial MIMOantenna set for 4G, 5G, WLAN and V2X and evaluation of its LTE-performance in an urban region," 2019 13th European Conference on Antennas and Propagation (EuCAP), 1-5, Krakow, Poland, 2019.

    16. Heiman, A., A. Badescu, and A. Saftoiu, "A new multiple input multiple output V2V automotive antenna for long term evolution band applications," 2018 International Symposium on Fundamentals of Electrical Engineering (ISFEE), 1-5, Bucharest, Romania, 2018.

    17. Guan, N., H. Tayama, M. Ueyama, Y. Yoshijima, and H. Chiba, "A roof automobile module for LTE-MIMO antennas," 2015 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), 387-391, Turin, 2015.
    doi:10.1109/APWC.2015.7300160

    18. Thiel, A., L. Ekiz, O. Klemp, and M. Schultz, "Automotive grade MIMO antenna setup and performance evaluation for LTE-communications," 2013 International Workshop on Antenna Technology (iWAT), 171-174, Karlsruhe, 2013.

    19. Demien, C. and R. Sarkis, "Design of shark fin integrated antenna systems for automotive applications," 2019 PhotonIcs & Electromagnetics Research Symposium — Spring (PIERS-Spring), 620-627, Rome, Italy, 2019.

    20. Song, H. J., et al., "Evaluation of vehicle-level MIMO antennas: Capacity, total embedded efficiency, and envelope correlation," 2014 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), 89-92, Palm Beach, 2014.

    21. Preradovic, D. and D. N. Aloi, "Cross polarized 2 × 2 LTE MIMO system for automotive shark fin application," The Applied Computational Electromagnetics Society (ACES), Vol. 35, No. 10, 1207-1216, Oct. 2020.
    doi:10.47037/2020.ACES.J.351014

    22. Jonah, O., "5G antenna for automotive applications," 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, 1493-1494, 2020.
    doi:10.1109/IEEECONF35879.2020.9330087

    23. Potti, D., et al., "A novel optically transparent UWB antenna for automotive MIMO communications," IEEE Transactions on Antennas and Propagation, 2020.

    24. Liu, Y., Z. Ai, G. Liu, and Y. Jia, "An integrated shark-fin antenna for MIMO-LTE, FM, and GPS applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 8, 1666-1670, Aug. 2019.
    doi:10.1109/LAWP.2019.2927019