Vol. 90

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-01-18

Datacube Parametrization-Based Model for Rough Surface Polarimetric Bistatic Scattering

By Xueyang Duan and Mark S. Haynes
Progress In Electromagnetics Research B, Vol. 90, 167-186, 2021
doi:10.2528/PIERB20120801

Abstract

A datacube parametrization-based model for bistatic scattering coefficient estimation, and pattern reconstruction is presented in this work for electromagnetic wave scattering from rough surfaces with low to high subsurface dielectric constants. A datacube of bistatic scattering coefficients is simulated using the Stabilized Extended Boundary Condition Method (SEBCM). The polarization-combined bistatic scattering patterns of the datacube are fit with elliptical (or circular) contours that are parameterized across magnitude level, center location, and major axis length in normalized wavenumber space. These parameters depend on the surface roughness, dielectric contrast, as well as the angle of wave incidence. The polarimetric bistatic scattering patterns can be reconstructed through fast interpolation over the contours and projection onto the polarization unit vectors. Good agreement is achieved between the reconstructed bistatic scattering patterns compared with the original ones in the input datacube. Though not physics-based, this datacube parametrization-based model allows quick estimation and construction of the polarimetric bistatic scattering coefficients and patterns. The model development approach can also be adopted to parametrize datacubes from simulations with other configurations or targets, e.g., surface with different correlation functions, multilayer surfaces, surface covered with vegetation, etc.

Citation


Xueyang Duan and Mark S. Haynes, "Datacube Parametrization-Based Model for Rough Surface Polarimetric Bistatic Scattering," Progress In Electromagnetics Research B, Vol. 90, 167-186, 2021.
doi:10.2528/PIERB20120801
http://jpier.org/PIERB/pier.php?paper=20120801

References


    1. Franceschetti, G., M. Migliaccio, D. Riccio, and G. Schirinzi, "Saras: A Synthetic Aperture Radar (SAR) raw signal simulator," IEEE Transactions on Geoscience and Remote Sensing, Vol. 30, No. 1, 110-123, 1992.
    doi:10.1109/36.124221

    2. Nouvel, J.-F., A. Herique, W. Kofman, and A. Safaeinili, "Radar signal simulation: Surface modeling with the facet method," Radio Science, Vol. 39, No. 1, 1-17, 2004.
    doi:10.1029/2003RS002903

    3. Gerekos, C., A. Tamponi, L. Carrer, D. Castelletti, M. Santoni, and L. Bruzzone, "A coherent multilayer simulator of radargrams acquired by radar sounder instruments," IEEE Transactions on Geoscience and Remote Sensing, Vol. 56, No. 12, 7388-7404, 2018.
    doi:10.1109/TGRS.2018.2851020

    4. Alessi, S., F. De Acutis, G. Picardi, and R. Seu, "Surface bistatic scattering coe±cient by means the facet model radar altimetry application," 1996 26th European Microwave Conference, Vol. 1, 337-340, IEEE, 1996.
    doi:10.1109/EUMA.1996.337585

    5. Zhang, M., H. Chen, and H.-C. Yin, "Facet-based investigation on EM scattering from electrically large sea surface with two-scale profiles: Theoretical model," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 6, 1967-1975, 2011.
    doi:10.1109/TGRS.2010.2099662

    6. West, J. C., R. K. Moore, and J. C. Holtzman, "The slightly-rough facet model in radar imaging of the ocean surface," International Journal of Remote Sensing, Vol. 11, No. 4, 617-637, 1990.
    doi:10.1080/01431169008955045

    7. Garcia-Fernandez, A. F., O. A. Yeste-Ojeda, and J. Grajal, "Facet model of moving targets for ISAR imaging and radar back-scattering simulation," IEEE Transactions on Aerospace and Electronic Systems, Vol. 46, No. 3, 1455-1467, 2010.
    doi:10.1109/TAES.2010.5545200

    8. Williams, K. L. and D. R. Jackson, "Bistatic bottom scattering: Model, experiments, and model/data comparison," The Journal of the Acoustical Society of America, Vol. 103, No. 1, 169-181, 1998.
    doi:10.1121/1.421109

    9. Dahl, P. H., "On bistatic sea surface scattering: Field measurements and modeling," The Journal of the Acoustical Society of America, Vol. 105, No. 4, 2155-2169, 1999.
    doi:10.1121/1.426820

    10. Fung, A. K., C. Zuffada, and C.-Y. Hsieh, "Incoherent bistatic scattering from the sea surface at L-band," IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, No. 5, 1006-1012, 2001.
    doi:10.1109/36.921418

    11. Khenchaf, A., "Bistatic scattering and depolarization by randomly rough surfaces: Application to the natural rough surfaces in X-band," Waves in Random Media, Vol. 11, No. 2, 61-90, 2001.
    doi:10.1088/0959-7174/11/2/301

    12. Tabatabaeenejad, A. and M. Moghaddam, "Bistatic scattering from three-dimensional layered rough surfaces," IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 8, 2102-2114, 2006.
    doi:10.1109/TGRS.2006.872140

    13. Johnson, J. T. and J. D. Ouellette, "Polarization features in bistatic scattering from rough surfaces," IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, No. 3, 1616-1626, 2013.
    doi:10.1109/TGRS.2013.2252909

    14. Voronovich, A., "Small-slope approximation for electromagnetic wave scattering at a rough interface of two dielectric half-spaces," Waves in Random Media, Vol. 4, No. 3, 337-368, 1994.
    doi:10.1088/0959-7174/4/3/008

    15. Chou, H.-T. and J. T. Johnson, "A novel acceleration algorithm for the computation of scattering from rough surfaces with the forward-backward method," Radio Science, Vol. 33, No. 5, 1277-1287, 1998.
    doi:10.1029/98RS01888

    16. Kapp, D. A. and G. S. Brown, "A new numerical method for rough-surface scattering calculations," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 5, 711, 1996.
    doi:10.1109/8.496258

    17. Jandhyala, V., E. Michielssen, S. Balasubramaniam, and W. C. Chew, "A combined steepest descent-fast multipole algorithm for the fast analysis of three-dimensional scattering by rough surfaces," IEEE Transactions on Geoscience and Remote Sensing, Vol. 36, No. 3, 738-748, 1998.
    doi:10.1109/36.673667

    18. Fung, A., W. Liu, K. Chen, and M. Tsay, "An improved iem model for bistatic scattering from rough surfaces," Journal of Electromagnetic Waves and Applications, Vol. 16, No. 5, 689-702, 2002.
    doi:10.1163/156939302X01119

    19. Wu, T.-D., K.-S. Chen, J. Shi, H.-W. Lee, and A. K. Fung, "A study of an AIEM model for bistatic scattering from randomly rough surfaces," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 9, 2584-2598, 2008.
    doi:10.1109/TGRS.2008.919822

    20. Duan, X. and M. Moghaddam, "3-D vector electromagnetic scattering from arbitrary random rough surfaces using stabilized extended boundary condition method for remote sensing of soil moisture," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 1, 87-103, 2011.
    doi:10.1109/TGRS.2011.2160549

    21. Zribi, M., N. Baghdadi, N. Holah, O. Fafin, and C. Guerin, "Evaluation of a rough soil surface description with asar-envisat radar data," Remote Sensing of Environment, Vol. 95, No. 1, 67-76, 2005.
    doi:10.1016/j.rse.2004.11.014

    22. Duan, X. and M. Haynes, "Supporting data for the datacube parametrization-based model for rough surface polarimetric bistatic scattering,", 2020, [Online], available: http://dx.doi.org/10.21227/hg2q-b864.